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J. Phys. A: Math. Gen. 15 (1982) 743-771. Printed in Great Britain 

Off -mass-shell massless particles and the Weyl group in 
light-cone coordinates 

D J Almond 
Department of Physics, Queen Mary College, Mile End Road, London El 4NS, UK 

Received 21 May 1981, in final form 11 September 1981 

Abstract. We extend our previous work on the description of virtual (off-mass-shell) 
relativistic particles by unitary irreducible representations of the Weyl group (the group of 
PoincarC transformations and dilatations on Minkowski space-time) to the case of particles 
with zero on-mass-shell mass. We show that the structure of the d-dimensional Weyl group 
Lie algebra on the light-cone is that of the group of inhomogeneous Galilei transformations 
and non-relativistic dilatations on a Euclidean space plus time of (d - 2) space dimensions. 
The ‘dilatation’ generators of the two non-relativistic algebras are D and_ an 
infinitepansformation of these operators takes thepomentum operator P” into ( P * / J 2 , 0 ,  
rtP*/d2) respectively, where P* = (Po* Pcd-” ) /d2 .  The transformations therefore take a 
state of an off-mass-shell massless particle, of arbitrary momentum, onto the mass-shell. We 
work out how the spin and position operators transform under the infinite transformations, 
and express the Weyl group generators in terms of the transformed operators. We also 
construct a canonical form for the transformed operators and generators, and discuss the 
transformation properties of the single-particle states under a unitary operator of the Weyl 
group. The case d = 4 is discussed in detail and, in particular, we extend Weinberg’s 
theorem on massless irreducible representations of the d = 4 Poincare group to the case of 
the Weyl group. In an appendix, we treat the position-spin-momentum algebra of the Weyl 
group classically (i.e. as Poisson brackets) and find the Dirac brackets compatible with the 
constraints P 2 = 0 ,  R’-P -0. 

1. Introduction 

We have shown (Almond 1973a, 0 111) that off-mass-shell relativistic particles are 
described by unitary irreducible representations of the Weyl group, the group of 
PoincarC transformations and dilatations acting on Minkowski space-time. The ori- 
ginal work was for space-time of dimension d = 4, but it was later shown that the 
generalisation to arbitrary d was straightforward (Almond 1981a). However, these 
papers dealt only with particles of non-zero on-mass-shell mass (‘massive particles’), 
and the case of particles with zero on-mass-shell mass (‘massless particles’) remained 
unresolvedt, the problem being essentially that a dilatation transforms the momentum 
operator P” into e-aP”, and so a state of an off-mass-shell massless particle with 
time-like or space-like momentum can never be put onto the mass-shell (i.e. trans- 
formed into a state with light-like momentum) by a dilatation transformation. In this 
paper we show that the correct framework for treating massless particles is the Weyl 
group Lie algebra in light-cone coordinates. The operators D *MO“-” (where D and 

t The statement in the ‘note added in proof’ of Almond (1973a), that massless particles are described by the 
zero-mass limit of massive particles, is trivial and should be ignored. 
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direction, respectively) occur naturally in the light-cone algebra, and an infinite 
transformation generated by these operators takes a state of an off -mass-shell massless 
(or for that matter, massive) particle with time-like or space-like momentum into one 
with light-like momentum. 

The layout of the paper is as follows. In $ 2 we analyse the Lie algebra of the 
d-dimensional Weyl group in light-cone coordinates. It is well known that the light- 
cone structure of the d = 4 PoincarC group Lie algebra (Bacry and Chang 1968. 
Bardakci and Halpern 1968, Susskind 1968, Kogut and Soper 1970, Bjorken i'f ai 
1971, Biedenharn et a1 1973, Kogut and Susskind 1973, Staunton 1973, Riedenharri 
and van Dam 1974) is just that of the extended Galilei group Lie algebra (LC 
Leblond 1963) in two space dimensions. This result was generalised to arbitrary d 1 ) )  
Hu (1972), who showed that the light-cone structure of the Poincar6 group Lie algebra 
in this case is that of the extended Galilei group Lie algebra in ( d  - 2) space dimensions. 
It has also been shown (Del Guidice et a1 1972, Domokos 1972, Burdet t'r a1 1973) that 
the light-cone structure of the d = 4 conformal group Lie algebra is that of thc 
Schrodinger group (i.e. the group of inhomogeneous Galilei transformations, non- 
relativistic dilatations (?', x')  = (A'?, Ax) and 'expansions' (?', x ' )  = ( t / ( l  - - twr l .  x , ' ~  I * a11 
(Burdet and Perrin 1972, Hagen 1972, Niederer 1972, Roman era1 1972)) in  two spacc 
dimensions. With these results in mind, it is not surprising that we find the light-cone 
structure of the Lie algebra of the d-dimensional Weyl group to be that of the group of 
inhomogeneous Galilei transformations and non-relativistic dilatations [Almond 
1973a, § 11, Bez 1976) in ( d - 2 )  space dimensions. We work out the 'spin', 'time' and 
'position' operators of the two 'non-relativistic' algebras, and their transformation 
properties under parity and time-reversal. 

3 we show that an infinite transformation generated by the 'dilatation' genera- 
tors of the two 'non-relativjstic' algebras, D * Mofd-", takes the momentum operator 
P'" into (P*/&, 0, *P*/ J2), and so takes a state of an off -mass-shell massless particle 
onto the mass-shell. In D 3.1 we work out how the different components of the 
relativistic spin and position operators transform under an infinite transformation 
generated by D + Mni"--ll, and find that some of the components go over into the 'spin^, 
'time' and 'position' operators of the corresponding 'non-relativistic' algebra. We work 
out the algebra satisfied by these transformed operators, and give a canonical represen- 
tation of them. We also express the Weyl group generators in terms of the transformed 
operators, and therefore have a canonical representation of the generators too. In 6 3.2 
we evaluate the effect of an infinite transformation generated by D + M  on a state 
of an off -mass-shell massless particle with time-like momentum. Because of the 
complicated nature of the spin for general d, we restrict ourselves to a particle moving in 
the (d - 1) direction, The on-mass-shell states are in a different Hilbert space to the 
off-mass-shell states, since the infinite transformation is non-unitary (i.e. it has no 
inverse). We work out the transformation properties of a general on-mass-shell state 
under a unitary operator of the Weyl group. Section 3.3 is devoted to a study of the 
effect of the other infinite transformation generated by D - M  on the operators 
and states. Section 3.4 deals with how the parity and time-reversal operators transforni 
the two Hilbert spaces of on-mass-shell states into each other. 

Section 4 is devoted to a study of the case d = 4. In § 4.1 we work out how the 
Pauli-Lubanski spin pseudovector and the helicity operator transform under the two 
light-cone transformations. We also give a canonical form for the Weyl group genera- 
tors and show that for p2 = 0 it agrees with the expressions obtained for the Poincare 
group generators by previous authors (Lomont and Moses 1962, Chakrabarti 19661. In 

are the Hilbert space generators of dilatations and boosts i n  thc id - -  i 

In 

0 ld - l )  

O(d-1) 
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04.2 we evaluate the effect of the two light-cone transformations on a state of an 
off -mass-shell massless particle with time-like four-momentum, and show how the 
states in the two on-mass-shell Hilbert spaces are related by parity and time-reversal. 
In § 4 . 3  we extend Weinberg’s theorem (Weinberg 1964a, Nieder and O’Raifear- 
taigh 1974, ch VII) on the description of massless irreducible representations of the 
PoincarC group by irreducible representations of the homogeneous Lorentz group. In 
addition to Weinberg’s result that an on-mass-shell massless particle of helicity A > 0 
can only be described by irreducible representations of the Lorentz group (k, k + A )  
(with k any integer or half-integer such that k 3 0, k + A  3 0), we find that the different 
helicity components of an off -mass-shell massless particle taken onto the mass-shell 
must all have the same value of 2k + A .  A corresponding result holds for A < 0. 

Section 5 is a Conclusion. Appendix 1 discusses the extended Lie algebra of the 
group of inhomogeneous Galilei transformations and non-relativistic dilatations in an 
arbitrary number of space dimensions. Appendix 2 is concerned with the application of 
the second-class constraints cpl P2 = 0, cp2 = R’ - @ i= 0 to the d-dimensional Weyl 
group Lie algebra in classical (Poisson bracket) form. Here a novel feature appears: 
since thePoisson brackets{R”, R+-@}and{W””, R’-@}are -1/P2, we find that,for 
components of R ” other than R’, the redefined quantities R ” - {R ”, (p,}C&pp (with 
Cap = {cp,, cpp}) ,  which should have vanishing Poisson brackets with the constraints, are 
not weakly equal to R”; similarly for the components of W”’”. However, we find that 
the linear combinations of R ”  and W”” which are weakly equal to their redefined 
expressions are just those which arose quantum mechanically in 0 3.1 as the light-cone 
transforms of the spin and position operators. Appendix 3 contains a proof of an 
operator identity, and appendix 4 deals with some properties of the finite-dimensional 
irreducible representations of SO(d - 1, 1). 

2. The d-dimensional Weyl group in light-cone coordinates 

The Weyl group is a [fd(d + 1) + 11-parameter group consisting of the homogeneous 
Lorentz transformations, displacements and dilatations acting on Minkowski space- 
time x @  = ( x  , x , . . . , x 0 1  d-1 ) = (xo, x i )  according to 

x’” =AL”&”+a’”. (2.1) 
Here A, the dilatation, is a real positive constant, a” is a real constant vector 
displacement, and L”,, the homogeneous Lorentz transformation, is a matrix satisfying 

L”Yg@pLpu = gum (2.2) 

goo = 1, 11 7 goi = 0 = g. I O .  (2.3) g.. = -8 . .  

Due to the presence of an arbitrary phase factor in quantum mechanics, physically we 
are interested in the direct sum of the Weyl Lie algebra with that of U(1), i.e.? 

where the Minkowski metric tensor, g,,, is given by 

[M,”, M o m ]  = i(M@”pg”“ -M”“Og”P + M ” W g ” P  -M”Pg”U), 

[MI””, P“] = -i(P”g”“ - Pugsu), 

[P”, P”] = 0, 

[M””, MI = 0, 

(2.4) 
[D, M W U ]  = 0, 

[P”, MI = 0, 

[D, P”] = -iP@, 

ID, MI = 0, 
-t Throughout the paper, we put h equal to unity. 
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where M””, P’, D and M are the Hermitian operators generating Lorentz trans- 
formations, translations, dilatations and U( 1 ) transformations, respectively, in Hilber: 
space. The algebra, equations (2.4), has been discussed in detail for d = 4 iAlmond 
1973a, § 111, 1974) and for general d (Almond 1981a‘i. To see its physical significance, 
we define the position operator 

where [A,  B]+ = A B  + B A ,  and the spin operator il\;yborg 1964, Kolsrud 196’ 

= ( g ” c J - + g ~ ~ ~  P’”P”‘ P’Prr\ 
p’ I M,,,. . P ,  

which satisfy 

( 2 . t )  

Equations ( 2 . 7 )  describe an off-mass-shell relaiirIstic particle and have been tound b: 
explicit calculation for several physical systems (Hanson and Regge 1974, Casalbuonr 
1976 (see also Almond 1981b, Brink and Schwarz 1981), Mukunda eta1 1980, .41mond 
1981a, 1982a). The invariants of the algebra are M, giving the on-mass-shell mass, 
$ Wc”” W,,, which for d s 4 gives the spin of the particle (for d > 4, there are other spin 
invariants; e.g. for d = 5 ,  ~EL(yprrrWIIVWp(,P~/~P2j1’2 is also invariant), and sign ( P 2 )  ifor 
sign (P2)  = 41, sign (Po)  is also an invariant). The Weyl group generators ,Vf’’’ ,tnd D 
can be expressed in terms of R”, P” and U’”’ b\ 

We also note the transformation properties of the various operators under a unitar! 
parity operator 9, and an anti-unitary time-reversal operator 9: 
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PW’”P-’ = q ( p ) ? - / ( v )  W’”, 

PMF1 = M, 

m ’ “ F - l  = -77(/.6)q(v) W’”, 

9-MF-l = M, 

where ~ ( 0 )  = +1, q(i) = -1. 
For the case sign (P2)  = +1, the spin operator is defined by 

where L-’(P)’, is the matrix operator 

1 L-’(P)’” = 

Pi 
(P2)1’2 

P‘Pj 
(P2)1/2((P2)1’2 + PO) 

(2.11) 

which takes P” into ((P2)”2, 0). The S” generate the Lie algebra of the (d - 1)-  
dimensional rotation group SO(d - l ) ,  

[SI],  S k ‘ ]  = i(StksJ‘ -S t ‘8Jk  + -Slkat’) ,  (2.12) 
and we can invert equation (2.10) to express W’” in terms of SI’: 

WO’ = PJS”/(P2)1/2, ( 2 . 1 3 ~ )  

We also note the commutators 
WO‘ 

[ R ’ + ( p 2 ) 1 / 2  + 9 s k j  = 0, [RO, Sk‘ l  = 0, 

WO’ .] = 0, ( P y 2  + P 
[RO,  R’+ 

(2.13 6) 

(2.14) 

WO’ 
R’ + WO’ [ + ( p 2 ) 1 / 2  + pO f (P2) 112 + p 

which, together with [R’, P”] = -ig’” and [S”, P”] = 0, allow us to write the canonical 
form 

where S k ’ ( p )  = -L-’ (p)k jL- l (p) ‘uW’u acting on a state of momentum p’ is given by a 
matrix irreducible representation of the generators of SO(d - l ) ,  and the p-derivatives 
are taken at constant S k ’ ( p ) .  We shall henceforth refer to Rk as the ‘canonical’ position 
operator. 

Now let us write the algebra, equations (2.4), in light-cone coordinates. Since, in 
this paper, we shall be concerned only with states of a single massless particle for which 
M has the sole eigenvalue zero, we shall not write this operator explicitly from now on. 



748 D J Almond 

We define the light-cone operators by 

with similar expressions for the components of R" and WgLb.  Henceforth, we shall drop 
the 'T' subscripts, and latin italic indices will be understood to run from 1 to id - 2 j 

Similarly, boldface type will denote a transverse vector of (d  - 2)  components. 
On writing the Lie algebra, equations (2.4), in terms of these operators, we immedi- 

ately see that the sets (M",  -hi!+', P' ,  P-. D +M0"'-I' ,  P+) and (M". -A4 ', P' ,  P . 
D --MO'"-", P-)  each form a non-relativistic algebra (J f r ,  K ' ,  P', H, D, M ) ,  of the kind 
discussed in appendix 1, in A = (d  -2)  space dimensions, together with the extra 
commutators 

[D -M""-", M"]  = -,M*I 

Let us call these two 'non-relativistic' algebras A and B respectively, and calculate their 
'spin', 'time' and 'position' operators given by equations (A1.4). On using equations 
(2 .5) ,  (2.6) and (2.8), we find 

S# = - W" - ( W * [ P ' -  W"P ' i /P '  

TA = R -, 

Ri = R'  t W - ' / P ^  

and 

O l d  1 1  We shall henceforth, for brevity, denote the operators D*M 
respectively. The operators of equations (2.18) and (2.19) transform under parity and 
time-reversal as 

by DA and DE 

so that 9 and .T each take one light-cone algebra into the other. We also note the 
transformation properties of the 'dilatation' generators, 

9 ~ ~ 9 - l  = D ~ ,  \2.21a 

.TDAF7-' = -Dg , t2.21br 
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which are of interest since these operators generate the light-cone transformations 
which will be discussed in '$3 3 and 4. 

3. Off -mass-shell massless particles (general d )  

We now study the infinite transformations generated by DA and Ds. These trans- 
formations are of the same form as the Gartenhaus-Schwartz transformation (Garten- 
haus and Schwartz 1957, Osborn 1968, Close and Copley 1970) which is used in 
constructing both internal operators and an explicitly translation-invariant wavefunc- 
tion for both non-relativistic (Gartenhaus and Schwartz 1957) and relativistic (Osborn 
1968, Close and Copley 1970) many-particle systems. We have, in fact, shown that the 
Gartenhaus-Schwartz transformation is nothing but an infinite centre-of-mass dilata- 
tion (Almond 1973a, 9 0  11.3 and 111.3). Throughout this section, we shall constantly use 
the equation P, Ww" = 0 expressed in component form 

p+ W-i + p- w+i - piw'i = 0 ,  

p ' w + ' + p + w - +  =o, (3.1) 
p'w-'-p-w-+ = 0. 

We shall also assume, throughout §§ 3 and 4, that sign (P2) = + l  and sign (Po) = +1, 
which automatically means that sign (P') = +1  and sign (P-) = +l. 

3.1. The infinite transformation generated by DA: effect on operators 

This section is in two parts. In 0 3.1.1 we find the transformed momentum, spin and 
position operators, and the commutation relations which they satisfy, and give a 
canonical representation of them. In § 3.1.2 we express the Weyl group generators in 
terms of the transformed operators, and give four different canonical representations of 
them: (i) off-mass-shell with ( p + ,  p - ,  p )  as independent variables; (ii) off -mass-shell 
with ( p 2 ,  p + ,  p )  as independent variables; (iii) on-mass-shell, i.e. p 2  = 0 with ( p + ,  p )  as 
independent variables; (iv) on-mass-shell, i.e. p 2  = 0; with ( P ( ~ - ' ) ,  p )  as independent 
variables. 

3.1.1. Momentum, spin, and position operators. First of all, we note the transformation 
properties of P', R' and Ww" under a finite 'dilatation' generated by DA: 

e-iaDAp+ e i ~ D A  - 
e-iaDAp- eiaDA - - e-2ap-, 

e-iaDApi eiuDA - - e-Orpi, 

e-iaDAR + eiaDA - 
e-iaD,R - - 
e-iaDAR i eiaDA - 

e-iuDAw*i eiaDA - - e*"w*', 

e-iaDAwij eiaDA - - wij, 

e - i a D A ~ - +  eiaDA - 

- P+,  

- e20LR+, 

- R - ,  

- eaRi, 

- w-+. 

(3.2) 
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where ( S I  ( p ) ,  Skd-”k( p ) )  are the matrix irreducible representation of the generators of 
SO(d - 1) when acting on a state of momentum p”’, and where the derivatives are taken 
at constant Sx ( p )  and Skd-”k ( p ) .  

3.1.2. Weyl group generators in terms of the transformed operators. Let us now express 
the Weyl group generators MWv and D in terms of the transformed operators by 
equations (2.8): 

~ + i  = p + ~ i   pi^+ 
M-i = p - ~ i  -piRA +pis i i /p++ (p2)1/2skd-”i 

DA = [ P - ,  R+]+-$[Pi ,  R;]+ ,  

Mij = P‘Rk - p j R i  - S i ,  

/ p + ,  (3.8) 

Ds =[P’, RA]+-$[Pi, R;]+ ,  

where, in evaluating the expressions for M-’, DA and DB, we have used equations (3.1). 
Using equations (3.7), we can write a canonical representation for these operators: 

(3.9) 

We immediately n g e  that MI’ automatically gives zero when acting on a state with 
momentum (p+ /J2 ,0 ,  p + / J 2 ) ,  in contrast to the Poincarb group (Wigner 1939, 
Weinberg 1964a) where this condition has to be put in by hand. Similarly M+’ 
automatically gives zero when acting on a state with momentum ( p - l f i ,  0, - p - / f i ) .  
We also note that, for any state with light-like momentum, the Skd-l” drop out of the 
expression for M-’ in equations (3.8) (similarly for Skd-”’(p) in the canonical 
representation for M-‘ in equations (3.9)). This ties in with the fact that the spin ‘little 
group’ of the massless irreducible representations of the d-dimensional PoincarC group 
is SO(d - 2) rather than SO(d - 1). 

We can, in fact, construct a canonical form for the generators which is explicitly valid 
for p 2  = 0 by changing variables from ( p + ,  p - ,  p )  to ( p 2 ,  p + ,  p )  and then putting p 2  = 0. 
The expressions for the partial derivatives are 

(3.10) 

($) p 7 , p + , p k ( + i )  =($) p + , p - , p k ( * i l  

and, on substituting equations (3.10) into equations (3.9), we find the ( p 2 , p c , p )  
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representation 

and substituting into equations (3.11): 

M+’ + ip+ ($) p 2 , p + , p k i # i l ’  

(3.12) 

We can find another canonical form valid for p2 = 0 by eliminating po in favour of p ‘  
and P ‘ ~ “ ’  First we change variables from ( p + ,  p-, p )  to (PO, p ,  p(d-’?, 

( 3 . 1 3 ~ )  
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and then change variables again from ( p o ,  p ,  P‘~”’) to ( p 2 ,  p ,  p ( d -  9: 

(3.13 b )  a a 
(F) p2,pk = (F) 

a =-(A) 1 . 
($)p(d-lj ,pk 2p0 ap p ( d - l l  .P k 

We then find, on applying equations (3.13), together with p 2  = 0, to equations (3.9), 

where p o  is shorthand for ( ~ ~ + ( p ( ~ - ~ ) ) * ) ~ ’ ~ .  More will be said about this canonical 
representation for the special case d = 4 which will be discussed in 0 4.1, where we shall 
show that this form of the Lorentz transformation generators M w u  is just that given for 
massless irreducible representations of the PoincarC group by Lomont and Moses 
(1962) and Chakrabarti (1966). 

3.2. The infinite transformation generated by DA: effect on states 

The off-mass-shell states of a massless particle transform as a unitary irreducible 
representation of the Weyl group. The irreducible representations are labelled by the 
mass m = 0 and the invariants of the (d - 1)-dimensional rotation group SO(d - 1) 
which we shall call si (i = 1 . . . L, where L, the rank of SO(d - l ) ,  is given by L = $d - 1 
for d even and by L = i ( d  - 1) for d odd). States within an irreducible representation 
are labelled by L mutually commuting spin components. However, this is not the whole 
story. For d 2 6, there are i [ i ( d  - l)(d - 2) - 3L] extra labelling operators (analogous to 
isospin in the case of SU(3))t. Futhermore, since we shall be going onto the mass-shell, 
where only the spin components S I  are physically significant (see discussion following 
equations (3.9)), it would clearly be unwise to use the S‘d-’’k in labelling the states. We 
shall therefore label the states within an irreducible representation by the eigenvalues 
of P”, and the mutually commuting S“ which we shall call p” and crr, respectively, by the 
spin invariants in the (d - 2)-dimensional transverse space which we shall call ti, and by 
the extra labelling operators in the (d  -2)-dimensional transverse space (for d 2 7 )  
which we shall call uk. Both j and I run from 1 to K, where K, the rank of SO(d - 2), 

t A Lie group with a parameters and of rank b has $(a - 3 6 )  extra labelling operators. 
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is equal to L for even d, and equal to L- 1 for odd d .  The index k runs from 1 
to $[$(d - 2)(d - 3) - 3K]. The total number of operators labelling states within an 
irreducible representation is K + K + k[$(d - 2)(d - 3) - 3K] which is equal to 
L + $[$(d - l)(d - 2) - 3L], the total number of ‘conventional’ labelling operators. 

An off-mass-shell state of a massless particle is therefore written lo, s; p, t, U, a) 
(where s denotes (sl, s2, . . . , sL); similarly for t, U, a), and states within an irreducible 
representation are normalised to 

(0,  s; p ’ ,  t ‘ ,  U ’ ,  a h  s; p ,  t, U, U )  = s , , $ u ~ , s u d d ( p f  - - P A  (3.15) 

where St j t  = S t i t l  . . . arkrK ; similarly for S, , , ,  SVfm. The effect on a single-particle state of 
a unitary operator of the Weyl group 

(3.16) U(A,  =, a )  = eia.Peifm~uMw~, e i ( lnh )D 

is given by (cf Almond 1973a, equation (111.64)) 

L, d lo ,  s; p ,  f, U, U )  

where p’  = A - l L p ,  L- l (p )  is defined in equation (2.11), and DF,,~,,,,,(R) is the unitary 
irreducible representation of SO(d - 1). 

We are now going to construct on-mass-shell states by considering the effect, on an 
off-mass-shell particle state, of the operator AiDA with A + 03. Since equation (3.17) is 
clearly very complicated for general d, we shall restrict ourselves to states of an 
off-mass-shell particle moving in the (d - 1)-direction, i.e. 10, s; (pot 0, P(~-”),  r, U, a). 
For this case, L-’( p’)LL( p) is just the unit matrix, and D~,u,u~fuu(L-l(  p’)LL( p ) )  is just 
equal to S f l ~ u , U S ( I I u ,  so the finite transformation just reads 

A i D ~  10, S ;  ( P O ,  0, p ‘ d - ’ ) ) ,  r, U, a )  

=Ald’*lo, S ;  ( (p ’+A- ’p - ) /& ,  0, ( p + - A - 2 p - ) / J Z ) ,  t, U, a). (3.18) 

We now define the on-mass-shell state by 

lo, s, t ;  (V’ lJZ, 0, p+lJ% U ,  a> 

where we have used the notation I} rather than I) to denote that the on-mass-shell states 
are in a different Hilbert space to the off-mass-shell states since the infinite trans- 
formation is non-unitary (it has no inverse)?. The rj now label the irreducible re resen- 
tations rather than the states within an irreducible representation. The l/& in 
equation (3.19) is familiar from the Gartenhaus-Schwartz transformation (Mi&etta 
1970, Palumbo 1971, Ernst etal1973, Malecki and Picchi 1975) and occurs because, in 
going onto the mass-shell, we are losing the degree of freedom p - .  In fact the states of 

‘t Note the interesting possibility that there exist in the p2 = 0 Hilbert space, particles that are not the p z  -+ 0 
limit of particles in the p2>0,  po>O Hilbert space. We call such particles ‘conons’ as distinct from the 
‘luxons’ considered here. See also Almond (1982a,b). 
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(3.25) looks as if it might not be well-defined forp' = 0 (i.e. (Y = T) ,  but in appendix 4 we 
shall show that the singularity in the first exponential is cancelled by the zero in the 
second exponential for the states which transform as a suitable finite-dimensional 
irreducible representation of the homogeneous Lorentz group SO(d - 1 , l )  with 
maximum eigenvalue iM0"-".) Since S I  and Skd-"k both commute with M+' and 

(see equations (3.6) and (3.8)), their effect on the state lo, s, f ;  p, U, a} is the 
same as on the standard state lo, s, t ;  ( K ,  0 ,  K ) ,  U, a}. The raising and lowering operators 
constructed from the S i  change the values of uk and q while the raising and lowering 
operators constructed from the Sad-"k change the values of ti as well. The general 
on-mass-shell states are normalised to 

MO'd-1) 

(0, s, f ;  p ' ,  U', a'lo, s, t ;  P ,  U, d 
= s,,,sU,,2p+s( p '+  - p + ) S d - 2 ( p ' - p )  

= ~,,,~,<,2po~(p"d-" - p " - " ) S d - 2 ( p '  - p ) ,  (3.26) 

where the latter equality follows from p +  = ( ( p 2 +  (p(d-1))2)1'2 + P ( ~ - ' ) ) / & .  
Let us now work out the effect of a unitary operator of the Weyl group U ( &  L, a )  on 

the state lo, s, f ;  p, U, a}. (We cannot, of course, use equation (3.17) since that is valid 
only for the off -mass-shell Hilbert space.) The unitary irreducible representations of 
the d = 4 Weyl group were first studied by Ottoson (1967), and the subject has been 
reviewed by Gornitz (1975). On using equation (3.23) and the group property 

U @ ' ,  L', a')U(A, L, a )  = U(A'A, L'L, A'L'a +a ' ) ,  (3.27) 

we find 

U(A, L, a)b, s, t ;  P ,  U, a} 

= ~ ( 1 ,  ~ ( A - ~ L P ) ,  O)U(A, g - ' ( ~ - l ~ p ) ~ & ? ( p ) ,  ~ - ' ( A - ' L ~ ) u )  

x 10, S, t ;  ( K ,  0, K ) ,  U, 0). (3.28) 

But ( A ,  9- ' (A- 'Lp)L3(p) ,  0) leaves ( K ,  0, K )  unchanged, hence 
U(A, 9- ' (A- 'Lp)L9(p) ,  0) is a unitary operator of the 'little group' whose generators 
are DA, and Mi' (i.e. the little group is isomorphic to the group of dilatations, 
displacements and rotations on a (d - 2)-dimensional Euclidean space): 

In fact, using equations (3.16) and (3.24), we find 

The unitary irreducible representations of the little group with the 'translation' genera- 
tors represented by zero are given by those of SO(d - 2) and are also labelled by the 
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eigenvalue of DA: 

lo, s, t, p ;  ( K ,  0,  K ) ,  U ,  a1 = 0, ( 3 . 3 1 ~ )  

(3.31b) W l o ,  s, r, p ;  ( K , o ,  K ) ,  U, a}= -s i lo ,  s, r, p ;  ( K ,  0,  K ) ,  U ,  a}, 

DAIo, s, t, p ;  ( K ,  0,  K ) ,  U, a1 = (i& - 2)  +p)b, s, t, P ;  ( K ,  0, K ) ,  U ,  a}, 
( 3 . 3 1 ~ )  

where p is a real number and where ih(d - 2 )  preserves the normalisation equation 
(3.26). The states lo, s, t ;  ( K ,  0,  K ) ,  U ,  a}, which we have been using up to now, all have 
the same value of p which we can take to be zero. We can write 

(3.32) 

where (Y-k and cyij are functions of 2- ' (Lp)L2(p ) .  On expanding the exponential in 
equation (3.32),  using [M", A K k ]  = i(M S -M-jLjik), and equation (3 .31a) ,  we find 

(3.33) 

~ ( 1 ,  . Y ' ( L ~ ) L Y ( ~ ) ,  0) = exp(i(a-kM-k +hai+Wij)), 

-i j k  

i& Mii ~ ( 1 ,  2 - 1 ( ~ p ) ~ ( p ) ,  o>lo, s, t, P ;  ( K ,  0, K ) ,  U ,  U} = e ii lo, s, t, P ;  ( K ,  0, K ) ,  U ,  a}, 

and, on writing the unitary irreducible representation of SO(d - 2)  as 

d ~ , u ~ u u ( R ( ~ - l ( ~ p ) ~ ( p ) ) )  = {t; U ' ,  a'le Alt;  U ,  a}, (3.34) 

we find, using equations (3.30), ( 3 . 3 1 ~ )  and (3.34) in equation (3.28), with 
lo, s, t ;  p ,  U ,  a)  replaced by lo, s, t, p ;  p ,  U ,  a}= U(1,  2 ( p > ,  O ) b ,  s, t, P ;  ( K ,  0, K ) ,  U ,  a}, 
that 

U(A,  L, a)lo, s, t, P ;  P ,  U ,  U} 

-if a.S " 

U' U' 

X d : , , . , , ( R ( 2 - ' ( L p ) ~ ( p ) ) ) ,  (3.35) 

where p' = h-'Lp. We shall show elsewhere (Almond 1982b) that p is nothing but the 
evolution parameter on the light-cone (cf Almond 1981a, equation (2 .7)) .  Henceforth, 
we shall, without loss of generality, put it equal to zero, and use the corresponding states 

As an example of these formulae, consider d = 5 .  The off-mass-shell states are 
lo, sl, s2; p ,  tl, ul), where the invariants of SO(4) (which has rank L = 2)  are given by 

lo, s, t ;  P, U ,  d. 

:sijsij +34is4i = s1(s1+ 1 )  + SZ(S2 + l ) ,  

?E s s = Sl(Sl+ l ) - sz (sz+  11, 1 ijk i j  4k 

1 i j  ij and tl(tl + 1 )  and a1 are the eigenvalues of ZS S and S12 respectively (which we use 
instead of S12 and S43). On going onto the mass-shell, the spin is described by SO(3) 
(which has rank K = 1 )  with invariant &$Si  = t l ( r l + l )  and with states 
lo, sl, s2, tl;  p, al} labelled by the eigenvalue a1 of Sy. 

3.3. The infinite transformation generated by DB 

In this section, we shall be very brief and just note the essential differences from the 
previous two sections. 
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The transformation properties of P”, R” and WWy under a finite ‘dilatation’ 
generated by DB are 

e-iuDep+ eiaDB - - e-2up+, 

e-iuDBp- eiuDB - 
e-iuDBpi eiuDB - - ePapi, 

- P-, 

-R+, e - i U D B ~ +  eiaDB - 
e - i u D B ~  - eiuDB - - eZuR - 

e - i a D B ~  i eiaDB - - e“R i, 
e-iuDBw*i eiaDe = eFaw*i, 

e-iuDB wii eiuDB - - wij, 

e-iuDB w-+ eiaDB = w-+. 

(3.36) 

Under an infinite transformation, the components of the ‘canonical’ position operator 
transform as 

(3.37) 

and the various components of the spin operator transform as 

where R-(= TB), RB and Sz are the time, position and spin operators of equations 
(2.19). The different components of the transformed canonical position operator 
commute with each other and with the transformed spin operators. The spin operators 
generate the commutator algebra of SO(d - 1). We can therefore write the canonical 
representation 

( d - l f k  ( d - l ) k  P” + p ” ,  s% + S % ( p ) ,  S E  + S E  
(3.39) 

with the p-derivatives taken at constant S $ ( p )  and S(sd-l)k(p). We can write the 
generators MPY and D in terms of the transformed operators?: 

t If we were to consider all of Minkowski pspace, instead of just the forward light-cone as in this paper, then 
the operators of equations (3.8) are valid everywhere except on the plane pc = 0 (because of M-‘),  whilst the 
operators of equations (3.40) are valid everywhere except on the plane p -  = 0 (because of M+‘).  
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We define the on-mass-shell state 

lo, s, t ;  ( p - 1  JZ, 0, - p - /  J2), U ,  ( T I  

(3.41) 

and they are normalised to 

10, s, t; (pr- /JZ, 0, -p ' - /JT) ,  U ' ,  ~'10, S, t ;  (p-/JZ, 0, -p-/JZ), U ,  U ]  

= 6,1,8,,,2p -8 (p ' - -p - )6d -2 (o )  

= ~,,,S,,,2p06( p''d-"-p(d-'))Sd-2(0). (3.42) 

Expressing Sz and Sg- ' )& of equations (3.38) in terms of Si' and S'd"'k using equations 
(2.13), we find 

(3.43b) 

and so, since S$ and Sg-')k commute with D B ,  we see from e uation (3.41 that the 

exactly the same as the effect of Si' and S'd"'k on the off-mass-shell states 
effect of Si and Sg-"k on the on-mass-shell states lo, s, t;  ( p - /  3- 2,0,  - p - /  ? 21, U, a] is 

lo, 3; (PO, 0, p(d-l'), t, U ,  4. 

3.4. Parity and time-reversal 

We first give the effect of parity and time-reversal on the off-mass-shell states: 

( 3 . 4 4 ~ )  

(3.446) 

where I', is the matrix with non-zero components 1'0 = 1, Iii = -Sij, (d -1 )  = -1. 
The phase factors ep(t, U ,  (T) and &T(t, U ,  a)  are independent of p, though not necessarily 
t, U and a, because I ( A  -'Lp) = A-'L'(Ip) and U(A, L', 0) = BU(h, L, 0)8-'= 
TU(A, L, 0 ) T ' .  

To find the effect of 8 and 9 on our standard on-mass-shell state 
lo, s, t; ( K ,  0, K ) ,  U ,  (T}, we use the definitions equations (3.19) and (3.41), together with 
equations (2.21), to give 

810, s, t ;  (K, 0, K ) ,  U ,  d= E p k  U ,  a)lo, s, t ;  (K,  0, -1, U, a], ( 3 . 4 5 ~ )  

40, S, t ;  ( K ,  0, K), U ,  a}= d t ,  U ,  (T)lO, 3, t ;  ( K ,  0, - K ) ,  U ,  -(TI,  (3.456) 
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and for our general on-mass-shell states, defined by equation (3.23) and by 

(3.46) - iMO(d- l )  
lo, s, t ;  p ,  U ,  v] = exp(-i~~iMcd-l 'i)(po/K) 10, S, t ;  (K, 0, -K), 4 01, 
where tan a = lp l /p(d- l ) ,  as before. We then find 

( 3 . 4 7 ~ )  

(3.476) 

We see that 9 and F transform one on-mass-shell Hilbert space into the other. 
Equations (3.45) and (3.47) also agree with equations (2.20) for the spin operators. 

4. Off -mass-shell massless particles (d = 4) 

We concentrate on those aspects particular to d = 4. 

4.1. The light-cone transformations: effect on operators 

4.1.1. Spin pseudovector and helicity operator. We define the Pauli-Lubanski spin 
pseudovector operator? W'" = wp W V P ,  which, in terms of the spin 
operator S1 = S23,  S2 = S3', S 3  = SI2 and momentum operator P, is (Almond 1973a, 
equation (111.28)) 

FvpMv,,Pm = 

), (4.1) 
P(P * s + P3S3) 2 1/2 3 P3(P ' s + P3S3) 

( P y 2  + PO we = (P s + P3S3, (P2)1/2s + (p2)1/2 + , ( P )  s + 

and the helicity operator of the off -mass-shell particle is 

A = Wo/(P2+ (P3)2)1/2. (4.2) 

Under the light-cone transformation generated by D + MO3, we find, using equa- 
tions (3.2) on W'" =&'"vpWu~m,  

W F  eiu(D+Mo3) = sfi'(P+/ JZ, 0, P+/ JZ), ( 4 . 3 ~ )  

- 9 (4.36) 

lim e-iu(D+Mo3) 

U'U3 

A eiu(D+M03) - si2 lim ,-iu(D+Mo3) 

a-m 

and, under the light-cone transformation generated by D -MO3, we find, using equa- 
tions (3.36) on W" = $ E ~ ' ~ W ~ ~ , , ,  

(4.4b) 

4.1.2. Canonical form of generators. In equations (3.14) for d = 4,  let us write J' = 
-M , J = -M , J = -M , N = -Mol, N 2  = -MO2, N 3  = -MO3 together with 23 2 31 3 12 1 

t Our convention is = + I .  
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S i  ( p )  =- Si2 (p). The canonical form then becomes 

where the derivatives are taken with p 2 =  (p0)2-(p1)2-(p2)2-(p3)2=constant =O.  
The forms for the Lorentz transformation generators are those found previously by 
Lomont and Moses (1962) and Chakrabarti (1966) for massless irreducible represen- 
tations of the PoincarC group. 

4.2. The light-cone transformation: effect on states 

We shall now consider the effect of the operator eia(DcMoa) with a + 00 on a general 
off-mass-shell state lo, s; p, U )  of spin s, four-momentum p’ and S3-eigenvalue U 

(which runs from +s to -s) t .  The properties of such states are exactly the same as those 
of states with non-zero on-mass-shell mass (see Almond 1973a, 0 III.l.C), and the 
effect of a unitary operator of the Weyl group on such a state is (Almond 1973a, 
equation (111.64)) 

(4.6) 
S 

U(A,  L, a)(o,  s; p, a) = A - ~  eip‘*a 1 lo, s; p ,  CT’)D~, , (L-’(P‘)LL(P)) ,  
“=-s 

where p’=A-lLp, L-’(p)  is defined in equation (2.11), and Dir,(R) is the unitary 
irreducible representation of SO(3). So for finite a we have 

where p ’  = e-“Lp and 

/cosha 0 0 sinh a\ 

LWL, = ( 0  0 0 1  l o  ; ) *  (4.8) 

\sinha 0 0 cosha/ 

We evaluate the Wigner rotation L-’(p’)LL(p) for finite a and then let a + 00, and find 

0 0  0 \ 

(4.9) 
t We emphasise again that the entire analysis is also valid for the light-cone limit of the massive particle states 
Im, s; P, U). 
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which we shall call R,. So, we find for the on-mass-shell limit of lo, s; p ,  a)  

io(D+M"3) 10, s; p ,  a) = i io, ( p + / ~ ~ ,  0, p + / ~ 2 ) ,  r ' } ~ : 6 , ( ~ , ) ,  
1 - iim eZa e 

J/s(o) a-rm 

(4.10) 

i.e. the mass-shellljmit of thggeneral off-mass-shell state 10, s; p ,  a) is a superposition 
of the lo, s; (ptLJ2, 0, p + / j ' 2 ) ,  a'}, except, of course, w h g  p w  = ( p >  0, p 3 ) ,  when we 
get lo, s; ( p t / J 2 ,  0, p ' / J 2 ) ,  a}. The a in lo, s; ( p + / J 2 , 0 ,  p + / J 2 ) ,  a}, being the 
eigenvalue of S?, is also the helicity of tke particle (see equation (4.3b)). 

For the states lo, s; ( p - / J 2 , 0 ,  - p - / J 2 ) ,  a] defined by 

(4.11) 

a, being the eigenvalue of Siz, is minus the helicity of the particle (see equation (4.4b)). 
The general on-mass-shell state is defined by 

l O , S ; P , a } = U ( 1 , S ' ( P ) , O ) l o , s ;  ( K , O , K ) , W } ,  

where 9 ( p )  is the product of a boost in the 3-direction and a rotation which takes the 
3-axis into the (p, p3)-direction (see equation (3.24)). Note that a is unchanged by any 
Weyl group operator, i.e. the helicity is an invariant, as we expect. (In fact, we could 
denote the states lo, s, t ;  p }  with t = U  the helicity, though the quoted form is more 
conventional.) Under a unitary operator of the Weyl group, the state lo, s; p ,  a} 
transforms as 

(4.12) U(A,  L, a)lo, s; p ,  a} = A-' ela'p'lo, s; p ,  a} e-'al*u 

(cf equation (3.391, where p ' =  h - ' L p  and 

9 lo, s ; p ,  a) = 77 ; lo, s ; Ip ,  a),  

Flo, s; p ,  a> = 77; (-)'+,lo, s; Ip,  -a>, 

is a function of S ' - ' ( L p ) U ( p ) .  
The effect of parity and time-reversal on the off -mass-shell states lo, s ; p ,  a) is 

( 4 . 1 3 ~ )  

(4.13b) 

where our notation is that of Weinberg (1964b, § IV). So, using the definitions of our 
standard on-mass-shell states lo, s; ( K ,  0, K ) ,  a} and lo, s; ( K ,  0, - K ) ,  a], i.e. equations 
(3.19) and (3.41) with d = 4, we find 

( 4 . 1 4 ~ )  

(4.14b) 
910, S; ( K ,  0, K ) ,  a}= 'V;/o, S ;  ( K ,  0, - K ) ,  U ] ,  

91% S ;  ( K ,  0, K ) ,  a}= 77$(-)'+'by S ;  ( K ,  0, - K ) ,  -a], 

and for the general on-mass-shell states of equations (3.23) and (3.46), we find 
~ I o , s ; p , a } = r l ; l ~ , ~ ; I P , ~ l ,  ( 4 . 1 5 ~ )  

F ~ o , s ; ~ , a } = 7 7 ~ ( - ) ' + ' [ o , s ; I p ,  -a]. (4.156) 

The significance of the two Hilbert spaces may be appreciated by considering an 
off -mass-shell neutrino of helicity -$, moving in the positive 3-direction. Such a state is 
denoted Iv; ( P O ,  0, p 3 ) ,  (+ = -4) (with p 3  > 0). If we ut this onto the mass-shell using 

neutrino of negative helicity. But if we put it onto the mass-shell using D -MO3, we 
obtain I Y ;  ( p - / & ,  0, -p- /&),  a = -i], i.e. an on-mass-shell neutrino of positive 

D +MO3, we obtain the state Iv; (p'/&, 0, p'/ P 2) ,  a = -$}, i.e. an on-mass-shell 
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helicity! Quite generally, we must work in one of the Hilbert spaces (in the example 
of the neutrino given above it is la=-?}) and then implement parity and time- 
reversal (if applicable) in the usual way (see e.g. Weinberg 1964a, § IX) 
by identifying 910, s; ( K ,  0, K ) ,  a} and 910, s; ( K ,  0, K ) ,  a} with the states 
U(1, R,, O)lo, s; ( K ,  0, K ) ,  -a} and U(1, R,, O)\o, s; ( K ,  0, K ) ,  a} respectively (both up 
to a phase factor), where R, is a fixed rotation that takes ( K ,  0, K )  into ( K ,  0, - K ) .  

4.3. Weinberg's theorem 

Weinberg (1964a) has shown that massless irreducible representations of the PoincarC 
group can be described by only certain irreducible representations of the homogeneous 
Lorentz group (see also Niederer and O'Raifeartaigh 1974, ch VII). We outline the 
proof below. 

Let us definei 

K'=$(J '+iN') ,  L' = $(Ji - iN') (i = 1 ,2 ,3 ) ,  (4.16) 

where J' = -$& 'jkMjk and N' = -MO' . These operators satisfy the Lie algebra of 
S0(3)0S0(3),  

[K', Kf] = ieijkKk 9 [Li, ~ i ]  = ie'ikLk, [K', L']= 0, (4.17) 

so that irreducible representations of this algebra are labelled by K 2  = k(k + 1) and 
L2 = l ( 1  + l ) ,  and states within an irreducible representation are labelled by the eigen- 
values of K3 and L3. Hence an on-mass-shell standard state of a massless particle 
lo, s; ( K ,  0,  K ) ,  a} can be described by the states lo, s;  ( K ,  0 ,  K ) ,  a}$4,)p,, which transform 
as the (k, I) irreducible representation of the homogeneous Lorentz group. We can 
rewrite equations (4.16) as 

M" = -(K3 +L3) ,  ( 4 . 1 8 ~ )  

(4.18b) 

(4.18~) 

(4.18d) 

(M+2 - M'l)/fi = K * + iK2, 

(M+' + iM+')/JZ = L~ - i~'. 
(4.18e) 

(4.18f) 

We recall (equations (3.31u, b)) 

M - l l O ,  S ;  ( K , O ,  K ) , C T } = O = M - ' 1 o , S ;  ( K , O ,  K ) ,  a}, 

M1'l0, S ;  ( K ,  0,  K ) ,  a}= --(TlO, S ;  ( K ,  0, K ) ,  V}, 
(4.19) 

so equations (4.18~)  and (4.18d) tell us that 

(K'-iK2)lo,s; ( K , O , K ) , V } = O ,  

(L'+&2)10, S; ( K ,  0, K ) ,  a}= 0, 

( K ~ + L ~ ) I ~ , S ;  ( K , o , K ) , ~ } = ~ I ~ , S ; ( K , O , K ) , ~ } ,  

(4.20) 

so the only states 10, s;  ( K ,  0, K ) ,  a}::?,~, which are allowed are those with k3  = -k, l 3  = I ,  

t In 8 4.3 we drop the convention that latin italic indices run only from 1 to 2. 
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(k3 + 1 3 )  = U, or, in other words, the k 3  = -k, l 3  = 1 component of the (k, I )  irreducible 
representation, where 

(k, I> = (k, k +a), k = 0 , 4 , 1 ,  . , for a > O ,  ( 4 . 2 1 ~ )  

(4.216) (k, 1 )  = (1 + Id, 0, 1 = 0 , ~ ,  1 , .  . , for a<O, 

which is the result of Weinberg. 
We now ask whether we can say anything about the states defined by equations 

(4.21) for different U, i.e. we consider the lo, s; ( K ,  0, K ) ,  a} as the on-mass-shell limit of 
the off-mass-shell states lo, s;  (PO, 0, p 3 ) ,  a) with a = - s .  . . s. (Remember that we 
could apply the same considerations to the light-cone limit states Im, s; ( K ,  0, K ) ,  v} 
of a massive particle.) We recall that, in the off-shell case, the states of different CT 
(i.e. different eigenvalues of S”) are related by the raising and lowering operators 
-S32*iS31. When we go onto the light-cone, these become the unphysical operators 
-S? *is: (see discussion after equations (3.9)). However, -Si2, Si1 and Si2 still 
satisfy the Lie algebra of SO(3) (see equations (3.6)), and therefore -S? f is? are the 
raising and lowering operators for the states (0, s ;  ( K ,  0, K ) ,  a }  (or lm, s;  ( K ,  0,  K ) ,  a}). 
But from equations (3.6) and (3.8); we see that 

1 

[-sB *is:, k f o 3 ]  = 0, (4.22) 

so that the states lo, s;  ( K ,  0, K ) ,  (or Im, s;  ( K ,  0, K ) ,  (T}:!?$)) with different values 
of U all have the sume eigenvalue @MO3, which, by equation (4.186), is just -i(k +I ) .  
Since, from equation (3.31c), the eigenvalue of D +MO3 for these states is i (i.e. ii(d - 2) 
with d = 4), we see that the eigenvalue of D is i(1 + k + I). 

So we now have our final result which can be stated thus: the description of the state 
lo, s; ( K ,  0, K ) ,  a }  (or Im, s; ( K ,  0, K ) ,  a}) of a spin multiplet by the (k, I) (with -k + 1 = a) 
representation of the homogeneous Lorentz group automatically fixes the description 
of the other states 10, s ;  ( K ,  0, K ) ,  a + n }  (or Im, s; ( K ,  0, K ) ,  a + n } )  (n is a positive or 
negative integer such that la + n I s s)  to be by the (k - gn, 1 + $n) representation of the 
homogeneous Lorentz group. This means that, for even spin s, the lowest-order 
representation that describes a = 0 is (is, is), and, for odd spin s, the lowest-order 
representation that describes a = 3 is (k(s -$), $(s +$)). These ideas can be translated 
into the language of quantum field theory when we take the Ipl/m + 00 limit of massive 
fields. For example, our theorem tells us that the lowest-order sets of fields that 
describe the massless limit of a massive spin-one particle are 

a = + 1  (091) (+,3 

a=-1 (190) (4,1,, 
a = o  ti,;) and ( L 1 )  (4.23) 

where, in terms of the massive spin-one field V ” ( x )  satisfying 

(O+m2)V”=0,  awv, = 0,  (4.24) 

(4.25) 
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i.e. (0,l)  and (1,O) are the chiral components of an antisymmetric second-rank tensor, 
(1, 1) is a traceless symmetric second-rank tensor, and (i, a) and (g, i) are the chiral 
components of a third-rank tensor antisymmetric in two indices and traceless in all pairs 
of indices. On expanding V” in terms of helicity plane-wave functions 

V ” ( x ) =  d 3 ~ ( e ” ( p , A ) a ( p , A ) f p ( x ) + e ” ( p , A ) * a t ( ~ , A ) f , * ( x ) ) ,  

f p ( x )  = (1/J(2.rr)3~(p)) e+.’, 

e”(p, +I> = -(o, (E(P, l )+ie(p,  2))/J2), 

e”(p, 0) = (Ipl/m, pE(p)/Iplm), 

e”(p, -1) = (0, MP, I)-~E(P,  2))/J2), 

A = O , t l  

(4.26) 

where p ,  E ( p ,  1) and E ( p ,  2) form a mutually perpendicular set. We easily see that, in 
the Ipl/m + 00 limit, only the required helicity components survive. 

5. Conclusion 

By using the infinite transformations generated by DA and DB we have been able to 
take off -mass-shell massless particles onto the mass-shell, and have been able to 
describe the particles by using the transformed operators. 

One point which has so far failed to emerge from this work, or our previous one on 
massive particles (Almond 1973a, 0 111), is the connection between the space-time 
position operator R” and the localised off-mass-shell states given by (Almond 1973a, 
equation (111.65)) 

d4p e ( p 2 ) e ( p o )  eiP’lm, s; p ,  (T) (5.1) 

(for d = 4), and also valid for m = 0. The elucidation of this problem is an important 
goal for future work. 

Appendix 1. The group of inhomogeneous Galiiei transformations and the 
dilatation (t‘, x‘) = (A *t, Ax) in A space dimensions 

This is a [$(A + 1)(A + 2) + 11-parameter group consisting of space rotations, pure Galilei 
transformations, displacements in space and time, and the non-relativistic dilatations 
acting on a A-dimensional Euclidean space plus time: 

(Al . l )  

where R is a rotation matrix, v is a boost velocity, U is a displacement in space, b is a 
displacement in time, and A is a dilatation. It has been studied in detail for A =  3 
(Almond 1973a, 011, 1974, Bez 1976), and it has been shown (Almond 1973a, 
appendix A) that, because in quantum mechanics we are looking for unitary ray 
representationst of the group, i.e. unitary operators U ( G )  satisfying 

u(G’)u(G) = eiE(G’.G) U(G’G),  (A1.2) 

i = A RX + A 2 ~ t  + U ,  t’ = A2t + b, 

?The classic paper on the subject is that of Bargmann (1954). There are several reviews available 
(Hamermesh 1962, ch 12, LCvy-Leblond 1971, B IILA, Almond 1973b). 
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with G', G two group elements and Z(G', G) a real phase factor, the structure we are 
studying in Hilbert space is not the Lie algebra of the group, but a certain central 
extension of it. The same central extension occurs for general A, and it is given by 

[J", J"] = -i("aJ'-J''a'k +J"a" -J/kaI'), 

[J", P'] = i(P'alk -Paik), 

[D, J"] = 0, 

[J", K ~ ]  = i(K'aIk -Kraik), 

[K', P'] = -wail, [K' ,  HI = -Pi, 

[J", HI = [K', KJ ]  = [ P i ,  P'] = [ P i ,  HI = 0,  (A1.3) 

[D, K']  = xi, [D, Pi]  = -Pi, 

[D, HI= -2iH, 

where J", K', P i ,  H and D are the Hermitian Hilbert space generators of rotations, 
boosts, space displacements, time displacements and dilatations, respectively, and M is 
the Hermitian Hilbert space generator of the central extension. 

[J", MI = [K', MI = [Pi ,  MI = [H, MI = [D, MI = 0, 

Let us now define the spin, time and position operators by 

S" = -J"+(K'P ' -K 'P ' ) /M,  (A1 .4~ )  

T=-[- 1 1  D] - [K' ,  P i ] +  
4 U' + 4MU ' 

(A1.46) 

respectively, where we have written U (H - P2/2M) for the internal energy opera- 
tor. These operators have the following commutation relations with the generators, 

[J", S k ' ]  = - i ( S ' k a " - S ' ' a ' k  +S"S'k -S'k#'), 

[K', Sk'] = [Pi, Sk'] = [H, Ski] = [D, S"] = [M, S"] = 0, 

[J", TI = 0, [K' ,  TI = 0, [Pi, TI = 0, 

[H, TI = i, [D, TI = 2iT, [M, TI=O, 

[Pi, R'] = -iaii, 

[J'f ,  R k ]  = i(Riajk -Riaik), [K' ,  R'] = -ia"T, 

[D, R'] = iR ', [M, R'] = 0, 

and with each other, 

(A1.5) 

(Al.6) 

all as we should expect. 
Equations (A1.5) and (Al.6) describe a virtual (off -energy-shell) non-relativistic 

particle, and the invariant operators of the algebra are M giving the mass, &?Si' which 
for A s 3 gives the s in of the particle (for A > 3, there are other spin-type invariants, 
e.g. for A = 4, ;is S S is also invariant), and sign (U). Since the internal metoy U is 
arbitrary for a non-relativistic particle (Uvy-Leblond 1963, Almond 1973% 8 U), a 
virtual non-relativistic particle is described group-theoretically by the direct sum of 
irreducible representations with the same mass and spin but with sign (U) = *l, as 
shown by Bez (1976). 

1 Ilk1 ! kl 
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Appendix 2. Poisson brackets and Dirac brackets 

The Poisson brackets of R'", P'" and WHV are obtained from the commutators, 
equations (2.7), by the replacement [A, B]/i + {A, B}. We wish to construct Dirac 
brackets (Dirac 1958, 1964, Hanson et a1 1976) compatible with the second-class 
constraints 

cp1= PZ = 0,  ( A 2 . 1 ~ )  

cp2~R'-p ~ 0 .  (A2 . lb )  

We can construct from any dynamical variable A, a new variable A': 

A+A'=A-{A,  cpa}C&p, (A2.2) 

where 

1 0 -1 c; =s(l o). 
(A2.3) 

This procedure is quite general, and normally we find that A' is weakly equal to A, 

A'=A, (A2.4) 

and, taking the Poisson bracket of equation (A2.2) with a second-class constraint cpy ,  

{A', cpyl = 0. (A2.5) 

In other words, A' is a quantity which is compatible with the constraints. However, in 
this particular case, this is not so, since {A, R' - p }  is - 1 /P2  for A = R'"(#+) or W'"". In 
fact 

R'+P, 
R + R' - w+' /2P+ - P i ( R + -  p) /P' ,  

P' + P', P-  + P-  - P2/2P+, p i  +pi, (A2.6) 

R-+ R-+ W-'/2P' - P-(R+ - p) /P ' ,  

w+i + ;w+i, 
wij + wij - (w+pj  - w+jpi ) /2p+,  

w-' + w-' + (p-  w+' +p'w-+) /2p+,  

w-+ + $ w-+. 
We therefore see that the quantities RC, R--  W-'/P', R i +  W+i /Pc ,  P', P-, Pi,  
- W" - (W"P' - W"P')/P' and -(P2)l" W+i /P+ are weakly unchanged under equa- 
tion (A2.2),  and are therefore the relevant dynamical variables to study. But they are 
the same quantities which were found in 0 3.1.1 and whose Poisson brackets with each 
other are given by equations (3.6) with [A, B]/i+{A, B}. Their Dirac brackets are 
given by the formula 

(A2.7) {A, B}* ={A, B H A ,  dc; {Pa, B}, 
and we find that the Dirac brackets are equal to the Poisson brackets except for 

(A2.8) 
W-+ * P-  

[ R - - p " P - ]  =- P+* 
* pi 

{R+, P-}* = 0, 
[ R i + p ' - , P - ]  W+' =- 

P+ 
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Appendix 3. An operator identity 

Consider three operators A,  B, C satisfying the commutation relations 

[A, B ]  = iC, [C, A ]  = iA, [C, B] = -iB, (A3.1) 

i.e. the Lie algebra of SO(2, 1). (We are thinking in terms of A = M - ' ,  B = LW', 
, but our treatment is quite general.) Let us look for an expression for 

exp(i@(A - B ) )  of the form 
c = MO(d-1 '  

We must now commute the operators A and C in the first two terms past the 
exponentials to the right of them by expanding the exponentials as power series and 
using the identity (valid for any two operators P and Q) 

We eventually find 

e ~ B ( A - B )  i(A - B )  = el"(H1A e'fcsi'ei"'H'Bi(h'(8) e""(A -s(@)c _ig2(@)B) 
1A3.5) +mw + f " m B  + g ' ( w ) .  

On equating the coefficients of A,  B and C on the two sides of this equation, we find 

h ' (@)  =e-""', f ' (8 )  = g(@), 2g'(8) = -(g2(8) + 21, (A3.6) 

which must be solved with the boundary conditions h(0)  = f(0) = g(0) = 0. This gives us 

(A3.7) 
g(e) = -42 tan(O/J2+nr) ,  

h (8 )  = J2 t an (e / J i+  n r )  

f(@) = In cos2(0/J2+ nr), 

( n  = integer), 

and, on choosing the branch n = 0, we obtain our final result: 

(A3.8) iJ2tan(f?/J2)A ilncosz($/\ 2 i C  - i J2 t an (~ / JZ)B  e~O(A-B) = e e e 

Similarly, we find 

(A3.9) 

The corresponding formulae with the positions of A and B interchanged can be found 
by the substitution A + B, B + A ,  C + -C in equations (A3.8) and (A3.9): 

e ~ B ( A + B )  = e~v'2 tanh(B/JZ)A 1lncosh2(B/J2)C iJ2tanh(B/JZ)B e e 

-i\i2tan(B/JZ)B -ilncos2(8/+2)C i-fZtan(B/JZiA et@(A-B) = e 

,iB(A+B) - iJ2 tanh(B/v 2)B -1lncosh2(0/J2)C 1%'2 tanh( 2iA 

e e 

- e  e e 

9 

(A3.10) 
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Appendix 4. A note on the finite-dimensional irreducible representations of 
SO(d-1,l)  

Firstly, we note that the finite-dimensional (and therefore non-unitary) irreducible 
representations of the Lie algebra of SO(d- 1,l) are given by the irreducible 
representations of SO(d) which are generated by the operators Mi', M(d- l ) i ,  MO', and 

. SO(d) has rank K + 1, where K is the rank of SO(d -2). The irreducible 
representations are labelled by the invariants a1 ( 1  = 1 . . . K + l), and states within an 
irreducible representation are labelled by the eigenvalue m of iMo(d-l), the eigenvalues 
mk (k = 1 . . . K) of K mutually commuting Mi', and the eigenvalues bj ( j  = 
1 . . . &(d - 1) - 3(K + l)]) of the extra labelling operators. We can write the Lie 
algebra in 'Weyl form' with the Hermitian operators 

iMO(d-1) , M 1 2 , M 3 4 , M 5 6 , .  . .  . (A4.1) 

iMO(d-1) 

The operators 

9 * i ~ - ~ ,  M-' iM-6, . , . (A4.2) M-l*iM-2 M - 3  

are raising operators for iM0"-" and lowering/raising operators for M1', M34, 
M S 6 , ,  . . . The operators 

(A4.3) 

are lowering operators for iMo(d-l) and lowering/raising operators for M1', M34, 
. . . . For d odd, the last operators in (A4.2) and (A4.3) are M-'d-2' and M+(d-2) ,  

respectively, which have no effect on M1', M34, M S 6 , .  . . . There are also the 
lowering/raising operators for M ~ ' ,  

(A4.4) 

M+' * iM+', M + ~  f i ~ + ~ ,  M+' * iM+6, . , . 

M ~ ~ * ~ M ~ ~ , M ~ ~ * ~ M ~ ~ ,  . , . , 
and also for M34, MS6,  . . . . 

(M-' * i&-2)q{$,,,ax,m,b) = 0, ( M - ~  * i ~ - ~ ) q i $ , , , ~ ~ , ~ , ~ )  = 0, etc, ( A 4 3  

and, by the theory of finite-dimensional representations of Lie algebras, will also satisfy 

A state with the greatest eigenvalue mmax of satisfies 

with p, 4, . . . integers and (MC1 + iM+2)P'Pi$, , ,m.x,m,b) f 0, etc. From equations (A4.6) we 
can derive 

(A4.7) 

(with n an arbitrary transverse unit vector) by expressing n 'M+' as a linear combination 
of M+l * iM+', etc, expanding in a binomial series, and using equations (A4.6). (The 
proof is straightforward for (d - 2) = 2, and can be proved for higher d by induction.) 
The equation 

[ ( n i ~ + i ) h + l ,  ( n i ~ - i ) ]  = ( n i ~ + i ) h ( h  + l ) ( i&O(d- l ) - I  2h)  ( h  =integer) (A4.8) 

follows from equations (2.17) and (A3.4), and, on putting h = (p  + 4 + . . .) and using 
equations (A4.5) and (A4.7), we see that the eigenvalue mmax of iM0"-" is equal to 

Let us now return to equation (3.25). Instead of the state 10, s, t ;  ( K ,  0, K ) U ,  a} we 
consider the states lo, s, t ;  ( K ,  0 ,  K ) ,  U ,  a}ik) , , ,ax,-m,6)  which transform as the (mmaxr -U, 6) 

( n i ~ + i ) ( p + q + . . . ) + l  (a) 
q(mmpx,m,b) = 0 

i ( p + 4 + .  . .). 
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component of the (a )  irreducible representation of SO(d - 1, 1). Since, on each of these 
states, the second exponential becomes ( p o  cos*($cy)/~) m.nax, and the first exponential 
terminates at the (p’M+i /p+)2mmax term by equation (A4.7), giving a factor tan2’nmay(ia)* 
we see that equation (3.25) is, in fact, non-singular as cy + T.  
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