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Off-mass-shell massless particles and the Weyl group in
light-cone coordinates

D J Almond
Department of Physics, Queen Mary College, Mile End Road, London E1 4NS, UK

Received 21 May 1981, in final form 11 September 1981

Abstract. We extend our previous work on the description of virtual (off-mass-shell)
relativistic particles by unitary irreducible representations of the Weyl group (the group of
Poincaré transformations and dilatations on Minkowski space-time) to the case of particles
with zero on-mass-shell mass. We show that the structure of the d-dimensional Weyl group
Lie algebra on the light-cone is that of the group of inhomogeneous Galilei transformations
and non-relativistic dilatations on a Euclidean space plus time of (d —2) space dimensions.
The ‘dilatation’ generators of the two non-relativistic algebras are D+ M 0@-b and an
infinite transformation of these operators takes the momentum operator P* into (P*/ v 2,0,
+P*/ v2) respectively, where P* = (P Pl /\/ 2. The transformations therefore take a
state of an off-mass-shell massless particle, of arbitrary momentum, onto the mass-shell. We
work out how the spin and position operators transform under the infinite transformations,
and express the Weyl group generators in terms of the transformed operators. We also
construct a canonical form for the transformed operators and generators, and discuss the
transformation properties of the single-particle states under a unitary operator of the Wey!l
group. The case d =4 is discussed in detail and, in particular, we extend Weinberg’s
theorem on massless irreducible representations of the d = 4 Poincaré group to the case of
the Weyl group. In anappendix, we treat the position-spin-momentum algebra of the Weyl
group classically (i.e. as Poisson brackets) and find the Dirac brackets compatible with the
constraints P2=0, R* -8 =0.

1. Introduction

We have shown (Almond 1973a, § III) that off-mass-shell relativistic particles are
described by unitary irreducible representations of the Weyl group, the group of
Poincaré transformations and dilatations acting on Minkowski space-time. The ori-
ginal work was for space-time of dimension d =4, but it was later shown that the
generalisation to arbitrary d was straightforward (Almond 1981a). However, these
papers dealt only with particles of non-zero on-mass-shell mass (‘massive particles’),
and the case of particles with zero on-mass-shell mass (‘massless particles’) remained
unresolvedt, the problem being essentially that a dilatation transforms the momentum
operator P* into e “P*, and so a state of an off-mass-shell massless particle with
time-like or space-like momentum can never be put onto the mass-shell (i.e. trans-
formed into a state with light-like momentum) by a dilatation transformation. In this
paper we show that the correct framework for treating massless particles is the Weyl
group Lie algebra in light-cone coordinates. The operators D + M*“™" (where D and

+ The statement in the ‘note added in proof’ of Almond (1973a), that massless particles are described by the
zero-mass limit of massive particles, is trivial and should be ignored.
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M"Y are the Hilbert space generators of dilatations and boosts in the id — 1}
direction, respectively) occur naturally in the light-cone algebra, and an infinite
transformation generated by these operators takes a state of an off-mass-shell massless
(or for that matter, massive) particle with time-like or space-like momentum into one
with light-like momentum.

The layout of the paper is as follows. In § 2 we analyse the Lie algebra of the
d-dimensional Weyl group in light-cone coordinates. It is well known that the light-
cone structure of the d =4 Poincaré group Lie algebra (Bacry and Chang 1968,
Bardakci and Halpern 1968, Susskind 1968, Kogut and Soper 1970, Bjorken ¢r al
1971, Biedenharn e a/ 1973, Kogut and Susskind 1973, Staunton 1973, Biedenharn
and van Dam 1974) is just that of the extended Galilei group Lie algebra (Lévy-
Leblond 1963) in two space dimensions. This result was generalised to arbitrary d by
Hu (1972), who showed that the light-cone structure of the Poincaré group Lie algebra
in this case is that of the extended Galilei group Lie algebra in (4 — 2) space dimensions.
It has also been shown (Del Guidice eral 1972, Domokos 1972, Burdet eral 1973) that
the light-cone structure of the 4 =4 conformal group Lie algebra is that of the
Schrodinger group (i.e. the group of inhomogeneous Galilei transformations, non-
relativistic dilatations (', ') = (A ’r, Ax) and ‘expansions’ (¢, x') = (¢t/(1 + at), x/ i1 + ar};
(Burdet and Perrin 1972, Hagen 1972, Niederer 1972, Roman eral 1972}) in two space
dimensions. With these results in mind, it is not surprising that we find the light-cone
structure of the Lie algebra of the d-dimensional Weyl group to be that of the group of
inhomogeneous Galilei transformations and non-relativistic dilatations (Almond
1973a, § 11, Bez 1976) in (d—-2) space dimensions. We work out the ‘spin’, 'time" and
‘position’ operators of the two ‘non-relativistic’ algebras, and their transformation
properties under parity and time-reversal.

In § 3 we show that an infinite transformation generated by the *dilatation” genera-
tors of the two ‘non-relativistic’ algebras, D+ M” """, takes the momentum operator
P* into (P*/~/2,0, £P=/+/2), and so takes a state of an off-mass-shell massless particle
onto the mass-shell. In §3.1 we work out how the different components of the
relativistic spin and position operators transform under an infinite transformation
generated by D + M*“ 7" and find that some of the components go over into the “spin’,
‘time’ and ‘position’ operators of the corresponding ‘non-relativistic’ algebra. We work
out the algebra satisfied by these transformed operators, and give a canonical represen-
tation of them. We also express the Weyl group generators in terms of the transformed
operators, and therefore have a canonical representation of the generators too. In§ 3.2
we evaluate the effect of an infinite transformation generated by D +M%*"" on astate
of an off-mass-shell massless particle with time-like momentum. Because of the
complicated nature of the spin for general d, we restrict ourselves to a particle movingin
the (d — 1) direction. The on-mass-shell states are in a different Hilbert space to the
off-mass-shell states, since the infinite transformation is non-unitary (i.e. it has no
inverse). We work out the transformation properties of a general on-mass-shell state
under a unitary operator of the Weyl group. Section 3.3 is devoted to a study of the
effect of the other infinite transformation generated by D —M®“~" on the operators
and states. Section 3.4 deals with how the parity and time-reversal operators transforni
the two Hilbert spaces of on-mass-shell states into each other.

Section 4 is devoted to a study of the case d =4. In § 4.1 we work out how the
Pauli-Lubanski spin pseudovector and the helicity operator transform under the two
light-cone transformations. We also give a canonical form for the Weyl group genera-
tors and show that for p> = 0 it agrees with the expressions obtained for the Poincaré
group generators by previous authors (Lomont and Moses 1962, Chakrabarti 1966). In
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§ 4.2 we evaluate the effect of the two light-cone transformations on a state of an
off-mass-shell massless particle with time-like four-momentum, and show how the
states in the two on-mass-shell Hilbert spaces are related by parity and time-reversal.
In §4.3 we extend Weinberg’s theorem (Weinberg 1964a, Nieder and O’Raifear-
taigh 1974, ch VII) on the description of massless irreducible representations of the
Poincaré group by irreducible representations of the homogeneous Lorentz group. In
addition to Weinberg’s result that an on-mass-shell massless particle of helicity A >0
can only be described by irreducible representations of the Lorentz group (k, kK +A)
(with k any integer or half-integer such that k =0, k + A = 0), we find that the different
helicity components of an off-mass-shell massless particle taken onto the mass-shell
must all have the same value of 2k +A. A corresponding result holds for A <0.

Section 5 is a Conclusion. Appendix 1 discusses the extended Lie algebra of the
group of inhomogeneous Galilei transformations and non-relativistic dilatations in an
arbitrary number of space dimensions. Appendix 2 is concerned with the application of
the second-class constraints ¢, =P>~0, ¢,=R*—B =0 to the d-dimensional Weyl
group Lie algebra in classical (Poisson bracket) form. Here a novel feature appears:
since the Poisson brackets {R*, R* —B}and {W**, R* — B} are ~1/P?, we find that, for
components of R* other than R, the redefined quantities R* —{R*, ¢.}Cas¢s (With
Cos = {®a ¢s}), which should have vanishing Poisson brackets with the constraints, are
not weakly equal to R*; similarly for the components of W**. However, we find that
the linear combinations of R* and W*” which are weakly equal to their redefined
expressions are just those which arose quantum mechanically in § 3.1 as the light-cone
transforms of the spin and position operators. Appendix 3 contains a proof of an
operator identity, and appendix 4 deals with some properties of the finite-dimensional
irreducible representations of SO(d —1, 1).

2. The d-dimensional Weyl group in light-cone coordinates

The Weyl group is a [5d(d + 1)+ 1]-parameter group consisting of the homogeneous
Lorentz transformations, displacements and dilatations acting on Minkowski space-
time x* = (x°% x', ..., x* )=’ x') according to

x*=AL*x"+a". (2.1)

Here A, the dilatation, is a real positive constant, a*“ is a real constant vector
displacement, and L*,, the homogeneous Lorentz transformation, is a matrix satisfying

L*.8uoL s = guo, (2.2)
where the Minkowski metric tensor, g,., is given by
goo=1, 8ii = =6y, 8oi =0=gio. (2.3)

Due to the presence of an arbitrary phase factor in quantum mechanics, physically we
are interested in the direct sum of the Weyl Lie algebra with that of U(1), i.e.t

M5, M = (Mg — M*"g" + Mg — Mg,
[M*, P"]=~i(P*g" — P"g""),

[P*, P"]=0, (D, M**]=0, D, P*]=—iP¥,
[M*,M]=0, [P*, M]=0, [D,M]=0,

(2.4)

+ Throughout the paper, we put # equal to unity.
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where M*", P¥, D and M are the Hermitian operators generating Lorentz trans-
formations, translations, dilatations and U(1) transformations, respectively, in Hilber:
space. The algebra, equations (2.4), has been discussed in detail for 4 =4 {Almond
1973a, § I1I, 1974) and for general d (Almond 1981a). To see its physical significance.
we define the position operator

1rp* [P,,,M‘“']v R
R* = [ . —] 3T, (2.5
2P P 2P 23)
where [A, B], = AB + BA, and the spin operator (Nyborg 1964, Kolsrud 1967:
o . PPN L, P P o
W i\ wp )(g e {,ﬂ.(‘)
which satisfy
[M*, R"]=—i(R*g"" ~ R"g"",
[R*, P"]=—ig"", [D,R*]=1iR"*, [M,R*]=1(,
[R*,R"]=—-1W*""/P".
[M“L, er}: i( prgur Wurgl.p + “ 1 u,w W c[) ey "'
[P*, W*?1=0, (D, W7 =0, (M, W j=40, )
(2.7
[l e PPT ‘. PP /
W W =i W g = ) - W g
[ 1=i{ W\ e~ \ (\g =
ol P’P‘ “P \
- ror w0 % Lp g'
P'W — PTW
[R¥, W™= it

Equations (2.7) describe an off-mass-shell relativistic particle and have been found by
explicit calculation for several physical systems (Hanson and Regge 1974, Casalbuoni
1976 (see also Almond 1981b, Brink and Schwarz 1981), Mukunda eral 1980, Almond
1981a 1982a). The invariants of the algebra are M, giving the on-mass-shell mass,

sW*'W,,, which for d <4 gives the spin of the particle (for d >> 4, there are other spin
invariants; e.g. for d = 5, 1MW, W, P,/ (P7)!? is also invariant), and sign (P?) (for
sign (P?) = +1, sign (P°) is also an invariant). The Weyl group generators M*" and D

can be expressed in terms of R*, P* and W"" by

M" = P*R* = P'R* + W"". ) 8)
(18
=3R" P.]..

We also note the transformation properties of the various operators under a unitary
parity operator &, and an anti-unitary time-reversal operator J':

7 MML'@ -1 — n(\u‘m(V)M“, ?]-AM'L“,F/V i . T]([.L )n{l’h\’f
PPP " = n(u)P", FTPT = nu)P",
PDP ' =D. TDI = -D.

PR"P ' =nuIR". TRYT = miuiR”.
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PWHP™ = n(u)n(@)W™, TWHIT = —n(u)nv) W,
PMP ' =M, IMT '=M,

where n(0) =+1, n(i)=-1.
For the case sign (P*)=+1, the spin operator is defined by

ij - iy- i o ij PiWOi"PiWOi
S’(P, W)y=-~L 1(P)pL 1(P)JUWP =—W’+W, (2.10)
where L '(P)*, is the matrix operator
| P° P,
L_I(P)“ _ (P2)17.2 (PZ)I/'Z (2 11)
i P ; PP ’
_(P2)1/2 5i”(P2)1/2((P2)1[2+P0)

which takes P” into ((P?)'?, 0). The S” generate the Lie algebra of the (d —1)-
dimensional rotation group SO(d — 1),

(7, ¥ =1(5% 8" — §"s" + §75™ — 5™5"), (2.12)
and we can invert equation (2.10) to express W*” in terms of S”:
WO = pigii/(p?/?, (2.13a)
iplail iploil
Wi = —(s“f— ( Pf)fj;?; P’z)f,'f fpo)). (2.135)
We also note the commutators
0i
[R‘+W1—}—)—O,sk’] =0, [R°, $¥]=0,
0 ; WOi
[R R +W} —0, (2.14)
Qi 0j
[RiJ'(PZ)?//%PO’ Ri+(P2)3/24I-P°] =5

which, together with [R*, P"]= —ig"” and [§", P*]=0, allow us to write the canonical
form

ot SMasMp), ROsi(3)
o , ’ (2.15)
RL=R'+—y1rr——s (—) :
C (P2)1/2+P0 -1 6‘p 20

where $*(p) = —L 7' (p)*,.L™"(p)', W*" acting on a state of momentum p* is given by a
matrix irreducible representation of the generators of SO(d — 1), and the p-derivatives
are taken at constant $*'( p). Weshall henceforth refer to R as the ‘canonical’ position
operator.

Now let us write the algebra, equations (2.4), in light-cone coordinates. Since, in
this paper, we shall be concerned only with states of a single massless particle for which
M has the sole eigenvalue zero, we shall not write this operator explicitly from now on.
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We define the light-cone operators by

P==(P '+ P V) /V2, Py =P i=1...(d-2.
M= = (M()i:tM{d»rlxi.)/N/‘E G=1...d~2).

) ) , (2.16)
Mi=M" (L,j=1...d-2)),

M =M= —p0ed-Y

with similar expressions for the components of R* and W*". Henceforth, we shall drop
the ‘T’ subscripts, and latin italic indices will be understood to run from 1 to (d ~21.
Similarly, boldface type will denote a transverse vector of (d —2) components.

On writing the Lie algebra, equations (2.4), in terms of these operators, we immedi-
ately see that the sets (M, —M™, P, P, D+M"*"", P"yand M", -M 7, P’ P".
D ~M%"V P7) each form a non-relativistic algebra (J ", K*, P, H, D, M), of the kind
discussed in appendix 1, in A=(d —~2) space dimensions, together with the extra
commutators

[M™, M =iM"+M"" 18",
[D+M" Y M " )=—iM"' (247
[D-M""" M =~iM"",

Let us call these two ‘non-relativistic’ algebras A and B respectively, and calculate their

‘spin’, ‘time’ and ‘position’ operators given by equations (Al.4). On using equations
{(2.5), (2.6) and (2.8), we find

Sh=-W'—(W"P -W"Py/P". (2.18a}

T =R" (2.18b)

R.u=R +W7/P" (2.18¢)
and

Sh=-W'—(W P -W P)/P 12.19a)

Ts=R", i2.1956)

RL=R'+W™/P". 2.19¢)

We shall henceforth, for brevity, denote the operators D+ M"™“ "' by D, and Dy,
respectively. The operators of equations (2.18) and (2.19) transform under parity and
time-reversal as

PSP ' =S}, TS4T ' =~Sk,
PTAP ' = T, TTAT "= -Th, (2,200
PRLP'=—RE, IRLT '=R5,

so that & and 7 each take one light-cone algebra into the other. We also note the
transformation properties of the ‘dilatation’ generators,

PDAP ' =Dy, 2.21a)
IDAT ' =—=Dp, (2.21h)
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which are of interest since these operators generate the light-cone transformations
which will be discussed in §§ 3 and 4.

3. Off-mass-shell massless particles (general d)

We now study the infinite transformations generated by D4 and Dg. These trans-
formations are of the same form as the Gartenhaus—-Schwartz transformation (Garten-
haus and Schwartz 1957, Osborn 1968, Close and Copley 1970) which is used in
constructing both internal operators and an explicitly translation-invariant wavefunc-
tion for both non-relativistic (Gartenhaus and Schwartz 1957) and relativistic (Osborn
1968, Close and Copley 1970) many-particle systems. We have, in fact, shown that the
Gartenhaus-Schwartz transformation is nothing but an infinite centre-of-mass dilata-
tion (Almond 19734, §§ I1.3 and I11.3). Throughout this section, we shall constantly use
the equation P, W*" =0 expressed in component form

PPW 7 +P W7 -PW’=0,

PW™ +P W™ =0, (3.1)

PW -P W =0,
We shall also assume, throughout §§ 3 and 4, that sign (P*)=+1 and sign (P%) = +1,
which automatically means that sign (P") =+1 and sign (P7) = +1.

3.1. The infinite transformation generated by D, : effect on operators

This section is in two parts. In § 3.1.1 we find the transformed momentum, spin and
position operators, and the commutation relations which they satisfy, and give a
canonical representation of them. In § 3.1.2 we express the Weyl group generators in
terms of the transformed operators, and give four different canonical representations of
them: (i) off-mass-shell with (p™, p~, p) as independent variables; (ii) off-mass-shell
with (p?, p”, p) as independent variables; (iii) on-mass-shell, i.e. p> = 0 with (p~, p) as
independent variables; (iv) on-mass-shell, i.e. p2 =0; with ( p(d'”, p) as independent
variables.

3.1.1. Momentum, spin, and position operators. First of all, we note the transformation
properties of P*, R* and W** under a finite ‘dilatation’ generated by D4:

e—iaDAP+ eiaDA=P+,

e iePap- eiaDA=e—2aP—,

e ieDPapi eiaDA_:e—aPi’
N eiaDA=62uR+’
e—iaDAR—eiaDA=R—,
e—iaDARieiaDA=eaRi’
e—iaDAWzi eiaDA - emawii,
e Papyil gieDa = Wij,

e DA " giePa —

(3.2)
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On using these equations and the inverses of equations (2.16),

P’=(P"+P7)/V2, Pl e (pT - PN,
R°=(R"+R)/V2, RCV= (R =RV2, (3.3)
WO = (W+i + W-—i)/\/’i 17 TRl (W+i — W L«)/V"é‘,

we find that, under an infinite D4 transformation, the various components of the
‘canonical’ position operator transform as

lim e 2% e @Pa(1/V2)(R°+RE V) e *Pa=R",

lim e T PA(1 V2R - RE V) e Pa= R =W /P =R, 3.4
lin;e-—,, ewiaDARl‘C eioeDA= i+ Wf*i/P«i =R:4,

and the various components of the spin operator, given by equations (2.10) and (2.1 1},
transform as

lim e "*Pagi el Pa= W (WP~ WHPH/ P =8

=

lim e “PagiT VR giePas (pIR R pt = gU VR

o> 00

where, it will be recalled, R*(= Ta), R4 and S}, are the time, position and spin
operators of equations (2.18). To find their commutation relations with one another,
we can either apply the infinite D, transformation to equations (2.12) and (2.14), or
evaluate them directly using equations {(2.7) and (3.1). We find

[S4, SA1=1(Sa8" - §48™ +Shs™ ~ S4s"),
[S:i—“k SAd—l)l}=iSlX

[S (a l‘k] __i(s(dAl)i(sik'__S\X“'X*(isii(\.iv
[P*, Sh]=[P*, S¥ V" =0,

[R S ] [RA,S ] [RA’S ] 0

3.60
,I:R ’S\;{,,,]),\-}z[R;»b Sk{-m“k] tRAs Stu Mk]_”
[R"RA]z[R*JR4}=[RA1RAj:{RAaRA]ZUe
[RT,P =1, {Rs, P =i, (R, P']=
[R™,P1=[RAP1=[R",P =0,
[Ria, P ]1=[Ra4, P ]=[Ra. P 1=0.
which allow us to write the canonical representation
Pr o pt, Sa~>Salp), S it o
d \ . Foa RV I
T =il . R o e R, e
R = l(ap’)p~,p, Az l(ap ;;,,} i A_H{\Sp ).
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where ($4 (p), SYV%( p)) are the matrix irreducible representation of the generators of
SO(d — 1) when acting on a state of momentum p“, and where the derivatives are taken
at constant $% (p) and ¥ V% (p).

3.1.2. Weyl group generators in terms of the transformed operators. Let us now express
the Weyl group generators M*" and D in terms of the transformed operators by
equations (2.8):

M*“=P'R4-PR*,  M"=PRL-PR,-S}
M~ =P R\ —P'R; +P'Si/P"+(P?)/284 D/ p*, (3.8)
Ds=[P",R*L.~YP Ril.,  Dp=[P",Ril.~}P'\RLl,

where, in evaluating the expressions for M ', D4 and D5, we have used equations (3.1).
Using equations (3.7), we can write a canonical representation for these operators:

. ] f 0
o @), ),
Op / p*pm.pk=0 op / p*pk

M'I—)i '(—) —-1i l(__f) _Su ,
p ap] p"'-P_.pk(“i) P ap R A(p)

faii 21/2 old=1)i
M_.-_)ip_(j_'_) +ip.-(_£:) +P SA+(p)+(p ) S:\ (p)’ (3.9)
P/ p* pmpk=n ap "/ p-p* p 14

d f 9 d
o), o),
A p ap ook p op ptp R0 2

d f a d
D —’(2 *(———) + (——,) +-—) .
B> 1\ 2P ap+ Pt 4 ap'/ p* pm pk=h 2

We immediately note that M ™' automatically gives zero when acting on a state with
momentum (p*/+2,0, p*/v2), in contrast to the Poincaré group (Wigner 1939,
Weinberg 1964a) where this condition has to be put in by hand. Similarly M ™
automatically gives zero when acting on a state with momentum ( p‘/\/i, 0,-p/ \/5).
We also note that, for any state with light-like momentum, the $% " drop out of the
expression for M’ in equations (3.8) (similarly for ¥ "(p) in the canonical
representation for M~ in equations (3.9)). This ties in with the fact that the spin ‘little
group’ of the massless irreducible representations of the d-dimensional Poincaré group
is SO(d —2) rather than SO(d - 1).

We can, in fact, construct a canonical form for the generators which is explicitly valid
for p> =0 by changing variables from (p*, p~, p) to (p, p*, p) and then putting p*>=0.
The expressions for the partial derivatives are

(_a_) _(_‘9_) _E_:(i) (_i’_) -1 (L)
ap+ p2,p* 6p+ p . p+ ap~ p*.p"’ 3p2 p*.p* 2P+ ap / p*p*

(57 (37 (55)
P =\ +—l— R
8p / p2prpx =0 \OP / prpmpk PP/ pr ok

and, on substituting equations (3.10) into equations (3.9), we find the (p> p*,p)

(3.10)
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representation
i 0
M* >ip* (“T) ’
ap p2,p* pRD

R 78 )
8] )
P op’ p2.p* pk=D P ap'/ p2 p prieo a(p)

o2, 2 i i 201/2 qld—1)i
» + )
Mol P )(_6_) +ip,(i+) +pSA+(p)+(p) S,: (p)’ 3.11)
2p Op / p2,p*pkt=d op / p2px 14 p
d i 0 d
DA—>—i(2p2(—) +p‘(—,) +—),
apz p*.p" ap'/ p2pr ke 2

boci( () (), ()t
B ap2 o p ap+ P2k Op'7 p2 p+ phie 2
The representation for p° = 0 is found by noting that
5(p*)207(3/30")8(p%) = 8(p7)(p*(3/3p%) ~ (/397> = 13 (p) = (~1)8(p)3(p?)

and substituting into equations (3.11):

N d
(5,
op p2pt,p<
) 9 7§ )
M i 1(_) . ,(__) Qi ,
~1p ap’ Pt pR=n P ap' p2.p* pk SA(p)
2 ioif
i ] f 0
M5 "+(—‘.) +ip'(—+-) +25ap) (3.12)
2p ap pLpT pk=0 ap p2,p* D
i 0 d-2
Db 53
ap p2pt,pD 2

9 ) _
DB»—i(2p+<—;) +p‘(—a,—.) . +-‘-1——2>
ap "/ p2pk P/ p2,p* phe=d 2

We can find another canonical form valid for p = 0 by eliminating p° in favour of p’
and p~" First we change variables from (p*, p~, p) to (p° p, p“ ™),

) 56 6o )
apo pld=1 ik \/2 ap+ P ap_ ptipk

)50, 6 L) @13a)

4

(i) _(_E"_)
api pD’p(dfl)’pk(;éi)_ api p-o—,p—‘pk(#i)’
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and then change variables again from (po, 2,0 ") to ( (d_”):

7)™ ), ‘-Gi>
(ap 2 ptd=1) pk(=i) ap 0 pld=1) pk(=i) apo p(d—l)‘pk’

p
9 9 p(d 1 9

( @= 1)) =( (d—l)) +— (““) s (3.13h)

ap pZp*  \OD % P 6p ptd b pk

( 8 ) _L(L)

sz pld=1i pk 2p0 apo p(dvl)’pk.

We then find, on applying equations (3.13), together with p> =0, to equations (3.9),

d ) )
if _, j il
M lp (ap) 2 ptd=b pki=) P (Gp ) 2 =), ki) SA(p)’

Mot (L) . 2'Skp)
b ap 2 ptd=1) pk(=D) p0+p(d—1),

; d 9 p'S4(p)
M(d o p(d 1)(ap) 2 pd-n) k(;m_lp (ap(d—1)> 2 k_p0+p(d_1)’
* o (3.14)

9
MO(d—l)_)i 0( - ) ,
14 a'p'(a—n D20k

D==i(p(557) e () )
ap 2 a1y Hk(=D) ap pp* 2

(d-1)y241/2
))

where p0 is shorthand for (p 24( p . More will be said about this canonical
representation for the special case d = 4 which will be discussed in § 4.1, where we shall
show that this form of the Lorentz transformation generators M*” is just that given for
massless irreducible representations of the Poincaré group by Lomont and Moses
(1962) and Chakrabarti (1966).

3.2. The infinite transformation generated by D ,: effect on states

The off-mass-shell states of a massless particle transform as a unitary irreducible
representation of the Weyl group. The irreducible representations are labelled by the
mass m =0 and the invariants of the (d —1)-dimensional rotation group SO{(d —1)
which we shall call s; (i =1... L, where L, the rank of SO(d —1),is givenby L = 3d—1
for d evenand by L = 3(d —1) for d odd). States within an irreducible representation
are labelled by L mutually commuting spin components. However, this is not the whole
story. For d =6, there are 3[5(d —1)(d —2)— 3L ] extra labelling operators (analogous to
isospin in the case of SU(3))%. Futhermore, since we shall be going onto the mass-shell,
where only the spin components S’ are physically significant (see discussion following
equations (3.9)), it would clearly be unwise to use the §¥ Pk in labelling the states. We
shall therefore label the states within an irreducible representation by the eigenvalues
of P*, and the mutually commuting §” which we shall call p* and o, respectively, by the
spin invariants in the (d —2)-dimensional transverse space which we shall call #, and by
the extra labelling operators in the (d —2)-dimensional transverse space (for d =7)
which we shall call u,. Both j and / run from 1 to K, where K, the rank of SO(d —2),

t A Lie group with a parameters and of rank b has 3(a —3b) extra labelling operators.
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is equal to L for even d, and equal to L—1 for odd 4. The index k runs from 1
to 3[3(d —2)(d —3)—3K]. The total number of operators labelling states within an
irreducible representation is K+K +33(d-2)(d-3)~3K] which is equal to
L +3[3(d —1)(d —2)—3L], the total number of ‘conventional’ labelling operators.

An off-mass-shell state of a massless particle is therefore written |o, s; p, t, u, o)

(where s denotes (s1, 53, . . ., 5z); similarly for ¢, u, o), and states within an irreducible
representation are normalised to
(0,8;p, ' u', o, s5p, 1, u, 0y = 818 b oo (P’ — D), (3.15)

where 8, = 84,1, . . . 1y ; Similarly for ., 8 ... The effect on a single-particle state of
a unitary operator of the Weyl group

U, L, a)=eia-Pei%auuM“"ei(ln)\)D (3.16)
is given by (cf Almond 1973a, equation (I11.64))

U, L, a)lo,s;p,t,u, o)

=A-d/2 eip"az Z to, S;p’, t’, u” 0”>D‘:'u'a"tuo'(LAl(p’)LL(p)% (317)

rou

where p' = A"'Lp, L™ '(p) is defined in equation (2.11), and D}, ¢'nmo (R) is the unitary
irreducible representation of SO(d —1).

We are now going to construct on-mass-shell states by considering the effect, on an
off-mass-shell particle state, of the operator A'Pa with A - 0. Since equation (3.17) is
clearly very complicated for general d, we shall restrict ourselves to states of an
off-mass-shell particle moving in the (d — 1)-direction, i.e. |o, s; ( po, 0, p(d"”), tou, o).
For this case, L'l(p')LL(p) is just the unit matrix, and D} o no (L™ (p')LL(p)) is just
equal to 8,8 ,.8»5, SO the finite transformation just reads

APalo, 53 (% 0,0 ), 1, u, o)

=270, 5; (p"+A72p7)/N2,0,(p" =ATp)/V2), b u, 3, (3.18)
We now define the on-mass-shell state by

lo, s, £; (p*/¥2,0,p"/N2), u, o}

= (1/V8(0)) lim A¥*A"4Jo, 5 (p°, 0,0V, 4, ), (3.19)

where we have used the notation [} rather than |) to denote that the on-mass-shell states
are in a different Hilbert space to the off-mass-shell states since the infinite trans-
formation is non-unitary (it has no inverse)t. The ¢ now label the irreducible represen-
tations rather than the states within an irreducible representation. The 1/V8(0) in
equation (3.19) is familiar from the Gartenhaus-Schwartz transformation (Miglietta
1970, Palumbo 1971, Ernst et al 1973, Malecki and Picchi 1975) and occurs because, in
going onto the mass-shell, we are losing the degree of freedom p~. In fact the states of

+ Note the interesting possibility that there exist in the p2 = () Hilbert space, particles that are not the p2 =0
limit of particles in the p>>0, p®>0 Hilbert space. We call such particles ‘conons’ as distinct from the
‘luxons’ considered here. See also Almond (1982a,b).
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equation (3.19) are normalised according to

{o,8,t; (p"IN2,0,p IN2), u', oo, s, £ (p*/N2,0, 07 /N2), u, o}
=8.u8002p"8(p'" —p )8 7*(0)
= 5u'u50'02p05(p'(d_1)—p(d_l))csd—z(O). (3'20)

To show more clearly the physical meaning of the eigenvalues s, #, 4, and o; of the
spin invariants and spin components in|o, s, ¢; (p~ /«/ 2,0,p"/ v 2), u, o}, we express Sa
and ¥ V% (via their definitions, equations (3.5)) in terms of §” and gla-Dk

using
equations (2.13) and find
S;‘,’ B Sij . PiPijk _PijSik _ (Pis(d—l)]' —PjS(d_l)i)((Pz)l/z+\/-2—,P+) (3 21a)
A V2P*(PH)"* + P°) J2P*((P)Y*+ P°) '
S(Ad_l)k _ S(d_l)k _ (Pzal'k _PiPk)S(d—l)i_ ((P2)1/2+\/2P+)Piski (3‘21b)

V2P ((PHY?+P% V2P (PH)V*+P%)
Since S% and S¥™"* commute with D4, we see that equations (3.18) and (3.20) give
Silo, s, t; (p*/¥2,0,p"/N2), u, 7}

= (1/¥8(0)) lim A“2A'Pas"lo, 5; (0%, 0, p“7V), 1, u, o), (3.22a)
SY ko, 5,15 (p*/N2,0,p" /V2), u, o}
=(1/V8(0) lim A**APA8“ (0,5 (p° 0,p“ ), L, 0),  (3.226)

so that the effect of S5 and SY " on the on-mass-shell states
lo, s, 1; (p*/¥2,0, p*/¥2), u, o} is exactly the same as the effect of S and §“~V* on the
off-mass-shell states |o, s; (p°, 0, p““™), 1, u, o).

An on-mass-shell (i.e. p* = 0) state of a massless particle of off-mass-shell spin s; and
on-mass-shell spin ¢, with general momentum p* = ( PO, p, P(d_l)) and given eigenvalues
uy, oy is generated from a standard state |o, s, t; (x, 0, k), 4, o} (with « >0) by

lo, s, t; p,u, a}=U(1, Z(p), 0o, s, t; (x, 0, x), u, o}, (3.23)
where £(p) is a product of a boost in the (d — 1)-direction and a rotation which takes the
(d — 1)-axis into the (p, p““~")-direction,

U(1, £(p), 0) = expliap M ") (p°/ )M, (3.24)

with tan a = |p|/p“" V(0 <a < ) and § a unit vector in the p-direction (in other words,

we have written a1 = a'* ' = ap’). We could instead have used the operator
UW (p), 0)= (V2r/p )4 2" exp(ip'M*/p*)(N2k/p*)*P",

but the quoted form is the conventional one (Wigner 1939, Weinberg 1964a). We
rewrite the first exponential in equation (3.24) using equation (A3.8) and find for
equation (3.23)

lo, s, £; b, u, o} =M 7" (p* IN2)M*“ o, 5, £ (x, 0, ), 4, o}, (3.25)

where we have used the fact that M ™ gives zero acting on |o, s, ¢; (x, 0, k), u, o},
together with the equations v2 tan(3a)=|p|/p* and p° cos’(a) =p*/v2. (Equation
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(3.25) looks as if it might not be well-defined for p* = 0 (i.e. @ = ), but in appendix 4 we
shall show that the singularity in the first exponential is cancelled by the zero in the
second exponential for the states which transform as a suitable finite-dimensional
irreducible representation of the homogeneous Lorentz group SO(d -1, 1) with
maximum eigenvalue iM°“¢ ")) Since $4 and S¥ "* both commute with M*' and
MOV (see equations (3.6) and (3.8)), their effect on the state |o, s, t; p, u, o} is the
same as on the standard state |o, s, ¢; (x, 0, «), u, o}. The raising and lowering operators
constructed from the S change the values of u, and o, while the raising and lowering
operators constructed from the S§ "% change the values of # as well. The general
on-mass-shell states are normalised to

{o,s,6;p',u', 0o, s, t;p, u, o}
=820 8(p" —p" )8 2 (p' - p)
= 5u’u60"a'2p05(p’(d_1) —P(d_l))sd_z(P' “P), (3-26)

where the latter equality follows from p* = ((p*+ (p**™"))2 +p4 V) /¥2.

Let us now work out the effect of a unitary operator of the Weyl group U (A, L, a) on
the state |o, s, t; p, u, o}. (We cannot, of course, use equation (3.17) since that is valid
only for the off-mass-shell Hilbert space.) The unitary irreducible representations of
the d =4 Weyl group were first studied by Ottoson (1967), and the subject has been
reviewed by GOrnitz (1975). On using equation (3.23) and the group property

UQA,L,aY UL ay=UQK'A,L'L,A'L'a+a"), (3.27)
we find
UL, alo,s, t;p, u, o}
=U@1,£(07'Lp), OU, £ A7 Lp)LEL(p), €™ (A 'Lp)a)
xlo, s, t; (k, 0, k), u, o’} (3.28)

But (A, L' A 'Lp)LE(p), 0) leaves (x, 0, ) unchanged, hence
U, £ YA 'Lp)LZL(p), 0) is a unitary operator of the ‘little group’ whose generators
are Da, M™* and M" (i.e. the little group is isomorphic to the group of dilatations,
displacements and rotations on a (d —2)-dimensional Euclidean space):

[Da, P*llo, s, t; (,0, k), u, o} =0,
M™% P*Ylo, s, t; (k, 0, k), u, o} =0, (3.29)
(MY, P*Yo, s, t; (k, 0, k), u, 0} = 0.
In fact, using equations (3.16) and (3.24), we find
U, £ (A 'Lp)LZ(p), 0)=A"P2U(1, £~ (Lp)L<L(p), 0). (3.30)

The unitary irreducible representations of the little group with the ‘translation’ genera-
tors represented by zero are given by those of SO(d —2) and are also labelied by the
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eigenvalue of D,:

Mo, s, t,p;(x,0, k), u,a}=0, (3.31a)

Mo, s, t,p;(k,0, k), u,cy=—S%lo,s,1,p; (x,0, k), u, o}, (3.31b)

Dalo, s, 1, p; (k,0, k), u, o} = (i5(d —2) +p)lo, s, 1, p; (%, 0, k), u, o},
(3.31¢)

where p is a real number and where i3(d —2) preserves the normalisation equation
(3.26). The states |o, 5, t; (x, 0, ), u, o}, which we have been using up to now, all have
the same value of p which we can take to be zero. We can write

U(1, 27 (Lp)LZL(p), 0) = expli(a—cM ~* +3a;M"), (3.32)

where a_, and ay; are functions of °Z’"l(l,pb)Le.‘zf’( p). On expanding the exponential in
equation (3.32), using [M", M~*]=i(M '8’ — M /8'), and equation (3.31a), we find

U1, £ (Lp)LL(p), Olo, 5, 1, p; (%, 0, k), u, 7} =e*M")0, 5, 1, p; (K, 0, x), u, 7},
(3.33)

and, on writing the unitary irreducible representation of SO(d —2) as

d'y oo (RELP)LL(P)) ={1; ', o'l 5 41; 4, o}, (3.34)
we find, using equations (3.30), (3.31¢) and (3.34) in equation (3.28), with
lo, s, t; p, u, o} replaced by lo, s, t,p; p, u, o}=U(1, £(p), 0o, 5, 1, p; (x, 0, k), u, o},
that

UL, a)o,s, t,p;p, u, o}
=ATHEDHR P S Y o, 5, 8,050 Uy 0}
u o

X d\poue(R(E ™ (LP)LL())), (3.35)

where p' = A~'Lp. We shall show elsewhere (Almond 1982b) that p is nothing but the
evolution parameter on the light-cone (cf Almond 1981a, equation (2.7)). Henceforth,
we shall, without loss of generality, put it equal to zero, and use the corresponding states
lo, s, t; p, u, o}.

As an example of these formulae, consider d =5. The off-mass-shell states are
lo, 51, 525 p, 1, o1), where the invariants of SO(4) (which has rank L = 2) are given by

18U 41848 = 5i(s1+ 1) +52(52+ 1),
eSS = 51(s1+1) = s2(s2+ 1),

and 1,(t; +1) and o, are the eigenvalues of 35S” and S'? respectively (which we use
instead of $'? and $*°). On going onto the mass-shell, the spin is described by SO(3)
(which has rank K =1) with invariant 2S%4S% =#(,+1) and with states
|o, 51, 52, t1; p, 1} labelled by the eigenvalue oy of S%.

3.3. The infinite transformation generated by Dy

In this section, we shall be very brief and just note the essential differences from the
previous two sections.
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The transformation properties of P*, R* and W*" under a finite ‘dilatation’
generated by Dp are

¢ 1*DPsp* giaDs - o~2ap+
e =P,
e i@Pepi gioDp e—aPi’
e ®PaR* oiDp = R",
e ®PaR~ oi®Ds = 20 R~ (3.36)
e i9PsR! ¢i*Ds — oo R ‘
e—iaDB W:i eiaDB - e:a W::i’
e Py giePs — Wi
e Py gloDp = Wt
Under an infinite transformation, the components of the ‘canonical’ position operator
transform as

lim e *Pa(1/V2)(R°+R¥ V) e Pe =R*+ W™ * /P =R},

lim 2% e *P5(1/V2)(R°— R¥ V) ei*Pr = R, (3.37)

a0

lim e ® e *PeRL e*Pe =R+ W/P =R}

a—>0
and the various components of the spin operator transform as

lim e *Peg7 gl*Pa = Wi (WP - WPy P = S},

o>

lim e—iaDss(d'I)k eiaDB = (P2)1/2 W—k/P—- Es(Bd'-l)k,

o -0

(3.38)

where R™(=T3), R5 and S are the time, position and spin operators of equations
(2.19). The different components of the transformed canonical position operator
commute with each other and with the transformed spin operators. The spin operators
generate the commutator algebra of SO(d — 1). We can therefore write the canonical
representation

P* > p*, S~ St (p), SE k5 SE "V (p),

- 9 i .9
RE»—i(——a-:) R —>—i(——:) , R3—>1(—-7) '
ap /ot op /pmpl ap/ p*pmp 0

with the p-derivatives taken at constant S%(p) and S *(p). We can write the
generators M*” and D in terms of the transformed operators¥:

(3.39)

t If we were to consider ali of Minkowski p-space, instead of just the forward light-cone as in this paper, then
the operators of equations (3.8) are valid everywhere except on the plane p™ =0 (because of M ‘f), whilst the
operators of equations (3.40) are valid everywhere except on the plane p~ =0 (because of M *9.
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Pjsg— (P2)1/2S(éi—1)i

M*=P*RY -PR}+

P I
M"=PRy-PRy-S}, ~ M'=PR3-PR", (3.40)
Da=[P",R}).~3P, R5]., Dg=[P",R7).-3[P’, Rj]..

We define the on-mass-shell state
lo, s, £; (p~/¥2,0,-p~/V2), u, 7]

= (1/V8(0) lim A¥*A*2[o, 5; (p°, 0, P ™), 1, u, &) (3.41)
and they are normalised to

l0,s,1; (p'"/¥2,0, =p"" /N2), ', o'lo, 5, t; (p~/N2,0, —p ™ /N2), u, o]
= 5u’u30"02p - S(p'_ —p—)sd_z(o)

= 8uub oo 2p’8(p" P = p“ 547 %(0). (3.42)
Expressing S& and $§ ™% of equations (3.38) in terms of §” and §““ " using equations
(2.13), we find
N . ipk jk__PiPk ik Pi (d-1)j _ pig(d-1)i P2 1/2+‘/§P—
si=874 P_P_S 7 So +E5 _Pf > 1)/(2( )0 ) (3.43a)
V2P (PH)"*+ P°) V2P ((P*)*+ P°)
sia-vk _ ga-ve_(PP8E—PPOS (P22 + V2P )PSH (3.430)

V2P (PH)V*+P% V2P (P)V?+P%

and so, since S and $% % commute with Djp, we see from equation (3.41) that the
effect of §% and SV on the on-mass-shell states |o, s, t; (p~/v2,0, —p~/¥2), u, o']is
exactly the same as the effect of $7 and §“"V* on the off-mass-shell states
lo, 55 (p%0,p“" V), 1, u, ).

3.4. Parity and time-reversal

We first give the effect of parity and time-reversal on the off-mass-shell states:

Plo, s;p, t, u, ) =ep(t, u, @)lo, s; Ip, t, u, o), (3.444a)
Tlo, s;p, t, u, o)y =ex(t, u, d)lo, s; Ip, t, u, —0), (3.44b)

where I*, is the matrix with non-zero components I% =1, I';=—=8%, IV 4_,=-1.
The phase factors ep(t, u, o) and e1(t, u, o) are independent of p, though not necessarily
t, u and o, because T(A 'Lp)=A"'L'(Ip) and U@, L', 0)=PUQX L O)P '=
JUQ,L,0)T .

To find the effect of ? and I on our standard on-mass-shell state
lo, s, t; (x, 0, ), u, o}, we use the definitions equations (3.19) and (3.41), together with
equations (2.21), to give

Plo, s, t; (x,0, &), u, o} =eplt, i, Aoy 5, 15 (6,0, —x), u, 0], (3.45a)
910’ 8, t (K, 0, K)a u, 0'} = 8T(t1 u, 0)‘0) s, b (K3 0; _K)y u, _0'], (3-45b)
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and for our general on-mass-shell states, defined by equation (3.23) and by

lo, s, t; p, u, 1= exp(—iap'M“ ) (p°/ k) "M Vo, 5, t; (x, 0, —K), 4, o], (3.46)

(d-1)

where tan a =|p|/p'“™", as before. We then find

Plo, s, t; p, u, a}=ep(t, u, a)lo, s, t; Ip, u, o, (3.47a)
Tlo, s, t; p, u, oy =ex(t, u, o)lo, s, t; Ip, u, ~ol. (3.47b)

We see that 2 and J transform one on-mass-shell Hilbert space into the other.
Equations (3.45) and (3.47) also agree with equations (2.20) for the spin operators.

4. Ofi-mass-shell massless particles (d =4)

We concentrate on those aspects particular to d = 4.

4.1. The light-cone transformations: effect on operators

4.1.1. Spin pseudovector and helicity operator. We define the Pauli-Lubanski spin
pseudovector operatort W* = 3e*"*’M,, P, = 3¢*"*°W,,,P, which, in terms of the spin
operator S 1=6% §2=6% §°=¢" and momentum operator P*, is (Almond 1973a,
equation (II1.28))

P(P-5+P°S’ P’(P-§+P°S’
we=(Pos+pist, Py is e D S (s B S ERN

and the helicity operator of the off-mass-shell particle is
A= WO/(P2+(P3)2)1/2. (4.2)

Under the light-cone transformation generated by D + M, we find, using equa-
tions (3.2) on W* =3¢*""W, P_

lim e 7P E I BIMD = 2 (P /N2, 0, PT/V2), 4.3a)
21_1,120 @ TIHDTMO ) i (D+MOS) _ g12 {4.3b)

and, under the light-cone transformation generated by D —M°®, we find, using equa-
tions (3.36) on W* =3e“"°W,,P,,

lim e~ @~MP W i PMD = _gi2(P7/V2,0,-P7/V2), (4.4a)
lim 7 PTMIA I @MP = —g32, (4.4b)

4.1.2. Canonical form of generators. In equations (3.14) for d =4, let us write J' =
-M?, J*=-M*, PP=-M", N'=-M%, N*=-M" N>=-M?* together with

0123 _

+ Our convention is £ +1.
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S%4(p)=SX(p). The canonical form then becomes

[ 28 3\, p'Sap) 2 (.30 18\, p'Sa(p)
Jl'*—l( 2.__—._ 3___)+___—___’ J _)_l( —_ )+-————-—-’
14 8p3 p 6p2 p0+p3 p apl p 8p3 p0+p3
RN 3 . 0 8 p’Si(p)
73 _( 10 2 >+ 3 (p), Nio—ip®2 _ ’
>-1p 6p2 p apl Salp) = —1p apl p0+p3 “s)
.08  p'Si(p) 3 . o 0 .
N2> —jpt— 422407 —ip® 2
T T % N>

d d d
D —‘( ' +pi—+ 3———+1),
- lpapl Papz Paps
where the derivatives are taken with p2= ( p°)2—( pl)z—( pz)z—(p3)2=c0nstant=0.
The forms for the Lorentz transformation generators are those found previously by
Lomont and Moses (1962) and Chakrabarti (1966) for massless irreducible represen-
tations of the Poincaré group.

4.2. The light-cone transformation: effect on states

We shall now consider the effect of the operator e'*®*™** with a > on a general

off-mass-shell state |o, s; p, o) of spin s, four-momentum p* and $>-eigenvalue o
(which runs from +s to —s)t. The properties of such states are exactly the same as those
of states with non-zero on-mass-shell mass (see Almond 1973a, § IT1.1.C), and the
effect of a unitary operator of the Weyl group on such a state is (Almond 1973a,
equation (II1.64))

UL alo,s;p,oy=A"2e"" 3 lo,s;p,6)Doo(L™ (p)LL(P)), (4.6)
where p’ =)f1Lp, LY p) is defined in equation (2.11), and D, (R) is the unitary
irreducible representation of SO(3). So for finite @ we have

P, 53p,0)=e7* Y o, 530, 0)Dio (L7 (p)LL(p)), (4.7)
where p'=¢e “Lp and
cosha 0 0O sinhea
0 10 0
7
L*, 0 01 0 4.8)

sinhae 0 O cosha

We evaluate the Wigner rotation LY p)LL(p) for finite « and then let a« - o0, and find

1 0 0 0
— 0 p*p; p*(pH)*+v2p")
lim L™ (p)LL(p)*, = 8*; i -
(i, b (POLLLP) 0 +((1)2)”2+p°)~/2p+ (@ +p°W2p* |
_pe)' P +V2py r’
(pH'*+pWV2p* (pHV2+p"W2p*

4.9)

+ We emphasise again that the entire analysis is also valid for the light-cone limit of the massive particle states
Im, s;p, 0).
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which we shall call R.. So, we find for the on-mass-shell limit of o, 5; p, o)

1 (DA A3 s _ _
\/%—‘3 lim e2a ela(D M )!o’s;p,cr): z IO;SQ(P+/\/2,0,p+/\/2),U'}Df,'c,(Rw),

4.10)

i.e. the mass-shell limit of the general off-mass-shell state |o, 5; p, o) is a superposition
of the |o, s; (p7/¥2,0, p"/¥2), o'}, except, of course, when p* = (p°, 0, p*), when we
get lo,s;(p*/¥2,0,p"/v2), 0. The o in lo,s;(p*/v2,0,p"/v2), g}, being the
eigenvalue of §12 is also the helicity of the particle (see equation (4.35)).

For the states o, s; (p~/v2,0, —p~/v2), '] defined by

0,53 (p7/¥2,0,~p"/¥2), ¢]=(1/¥8(0)) lim & &P o, 5, (p°, 0, p7), 0,
(4.11)

o, being the eigenvalue of S, is minus the helicity of the particle (see equation (4.4b)).
The general on-mass-shell state is defined by

lo,s;p, at=U(1, £(p), 0)o, s; (k,0, k), o},

where £(p) is the product of a boost in the 3-direction and a rotation which takes the
3-axis into the (p, p’)-direction (see equation (3.24)). Note that o is unchanged by any
Weyl group operator, i.e. the helicity is an invariant, as we expect. (In fact, we could
denote the states |o, s, ¢; p} with ¢ = o the helicity, though the quoted form is more
conventional.) Under a unitary operator of the Weyl group, the state o, s; p, o}
transforms as

U, L, a)lo,s;p,o}=A""e“"o,s;p, o} e 12" (4.12)

(cf equation (3.35)), where p'= A "'Lp and a; is a function of £~ (Lp)LZL(p).
The effect of parity and time-reversal on the off-mass-shell states |o, s; p, o) is

Plo, s; p, ry=n¥lo, s; Ip, o), 4.13a)
Tlo, s; p, oy =n¥(=)"\o,s; Ip, —0), (4.13b)

where our notation is that of Weinberg (1964b, § IV). So, using the definitions of our
standard on-mass-shell states |o, 5; (x, 0, «), o} and |o, 5; (x, 0, —x), o], i.e. equations
(3.19) and (3.41) with d = 4, we find

Plo, s; (k,0, k), ct=ntlo, s; (k, 0, —K), 7], (4.14a)

Tlo, s; (x,0, k), o} =1 (=) "o, 5; (x, 0, —k), —0r], (4.14b)
and for the general on-mass-shell states of equations (3.23) and (3.46), we find

Plo, s; p,cy=nilo, s; Ip, o], (4.15a)

Tlo, s;p, o}=n%(=)""\o,s; Ip, —a]. (4.15b)

The significance of the two Hilbert spaces may be appreciated by considering an
off-mass-shell neutrino of helicity — 3, moving in the positive 3-direction. Such astate is
denoted |v; (p°, 0, p*), o = —3) (with p>>0). If we put this onto the mass-shell using
D +M%, we obtain the state |v; (p+/~/-2—, 0,p"/V2), 0 =~4}, i.e. an on-mass-shell
neutrino of negative helicity. But if we put it onto the mass-shell using D — M 2 we
obtain |v; (p~/ V2,0, —p‘/ﬁ), o =—3], i.e. an on-mass-shell neutrino of positive
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helicity! Quite generally, we must work in one of the Hilbert spaces (in the example
of the neutrino given above it is Ia=—%}) and then implement parity and time-
reversal (if applicable) in the usual way (see e.g. Weinberg 1964a, §IX)
by identifying Plo,s;(x,0,«),0} and Tlo,s;(x,0,«), 0} with the states
U(1, R., 0)lo, s; (x, 0, k), —o'} and U(1, R, 0)lo, s; (x, 0, k), o} respectively (both up
to a phase factor), where R_ is a fixed rotation that takes («, 0, ) into («, 0, —«).

4.3. Weinberg's theorem

Weinberg (1964a) has shown that massless irreducible representations of the Poincaré
group can be described by only certain irreducible representations of the homogeneous
Lorentz group (see also Niederer and O’Raifeartaigh 1974, ch VII}. We outline the
proof below.

Let us definet

K =3J'+iN", L =3J"-iN" (i=1,2,3), (4.16)

where J'=—3¢™M™ and N'=—-M". These operators satisfy the Lie algebra of
SOB)®SO@3),

(K, K'1=ie"K¥, [L), L']=ie" L", [K',L']=0, (4.17)

so that irreducible representations of this algebra are labelled by K?=k(k +1) and
L?=1(l+1), and states within an irreducible representation are labelled by the eigen-
values of K> and L®. Hence an on-mass-shell standard state of a massless particle
lo, 5; (k, 0, ), o’} can be described by the states |o, 5; (k, 0, k), o}{x¥);3), which transform
as the (k, /) irreducible representation of the homogeneous Lorentz group. We can
rewrite equations (4.16) as

MYP=—(K*+L?, (4.18a)
M®=y(K>-L3%, (4.18b)
~-M P +iM Y /V2=K'-iK?, (4.18¢)
—MP=iMY/N2 =L +iL?, (4.184)
M -iM*Y N2 =K '+iK?, (4.18¢)
(M2 +iM*™Y N2 =L'-iL? (4.18f)

We recall (equations (3.314q, 4))
M7 Yo, s; (x,0, k), 0}=0=M"o,s; (k,0, k), o},
Mo, 5;(x,0, k), ¢} =—0clo, s; (k, 0, k), 7},

so equations (4.18¢) and (4.184) tell us that
(K'-iK?)o, 53 (,0, k), o} =0,
(L' +iL%)o, 5; (x, 0, k), @} =0, (4.20)
(K*+L%o, 53 (x,0, &), c}=0lo, 5; (x, 0, k), o},

so the only states |o, s; (x, 0, k), o'}.<3 2, which are allowed are those with k* = —k, I> =1,

4.19)

tIn § 4.3 we drop the convention that latin italic indices run only from 1 to 2.
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(k*+ %) =0, or, in other words, the k*>= —k, I> =/ component of the (k, ) irreducible
representation, where

(k, D)= (k, k+0), k=0,31,.. fora>0, (4.21a)
(k,)=(+lo], 1), 1=0,3,1,... foro<0, (4.21b)

which is the result of Weinberg.

We now ask whether we can say anything about the states defined by equations
(4.21) for different o, i.e. we consider the |o, s; (, 0, k), o} as the on-mass-shell limit of
the off-mass-shell states |o, s; (po, 0, ps), o) with o =—s...s. (Remember that we
could apply the same considerations to the light-cone limit states |m, s; (, 0, «), o'}
of a massive particle.) We recall that, in the off-shell case, the states of different o
(i.e. different eigenvalues of $'?) are related by the raising and lowering operators
—-S32:tiS31. When we go onto the light-cone, these become the unphysical operators
—832 +i83 (see discussion after equations (3.9)). However, -§32 ¢3! 4 and S 12 still
satisfy the Lie algebra of SO(3) (see equations (3.6)), and therefore — ~832 £i83} are the
raising and lowering operators for the states |o, s; (k, 0, «), o} (or |m, 5; (x, 0, k), o}).
But from equations (3.6) and (3.8), we see that

[-$3 +isY, M»]=0, (4.22)

so that the states |o, s; (k, 0, k), o}, (or |m, s; (k, 0, &), o} E8,,) with different values
of & all have the same eigenvalue of M*®, which, by equation (4.18b), is just —i(k + /).
Since, from equation (3.31¢), the eigenvalue of D + M * for these statesis i (i.e. i3(d —2)
with d = 4), we see that the eigenvalue of D is i(1+k +1).

So we now have our final result which can be stated thus: the description of the state
lo, 55 (x,0, k), o} (or |m, 5; (, 0, k), o}) of a spin multiplet by the (k, ) (with~k +/=0)
representation of the homogeneous Lorentz group automatically fixes the description
of the other states |o, s; (, 0, k), o +n} (or |m, s; (K,0 K), 0'+n}) (n is a positive or
negative integer such that |o + n]<s) to be by the (k —3n, | +3n) representation of the
homogeneous Lorentz group. This means that, for even spin s, the lowest-order
representation that describes o =0 is (s, 1s), and, for odd spin s, the lowest-order
representation that describes o =5 is (3(s —3), 3(s +3)). These ideas can be translated
into the language of quantum field theory when we take the | p|/m - © limit of massive
fields. For example, our theorem tells us that the lowest-order sets of fields that
describe the massless limit of a massive spin-one particle are

o=+1 0,1) 3,3
o=0 3,9 and (1,1) (4.23)
o=-1 (1,0 3,9,
where, in terms of the massive spin-one field V*(x) satisfying
O+m?)Vv* =0, 8V, =0, (4.24)
the spin-one components of the various fields can be written as
(2, 2 A*=V*,
0,H®(1,0): F* =(@"V*—=3*V")/m,
El 1): A% =@V +3"V*)/m, #.29

G)DG 3 T =8°(8" V" =" V*)/m* +3(g*" V" — g V*),



Weyl group in light-cone coordinates 765

i.e. (0, 1) and (1, 0) are the chiral components of an antisymmetric second-rank tensor,
(1, 1) is a traceless symmetric second-rank tensor, and 3, 2 and (3, ) are the chiral
components of a third-rank tensor antisymmetric in two indices and traceless in all pairs

of indices. On expanding V* in terms of helicity plane-wave functions
Vi@ = T [ &P nMalp D@+ (5, A% (A ),
fo(x)=(1/N@m)YE(p)) e ",
e“(p, +1)=—(0, (e(p, 1) +ie(p, 2))/¥2), (4.26)
e*(p,0)=(p|/m, pE(p)/Ip|m),
e*(p,~1)=(0, (e(p, 1)—ie(p, 2))/V2),

where p, £(p, 1) and £ (p, 2) form a mutually perpendicular set. We easily see that, in
the | p|/m - oo limit, only the required helicity components survive.

5. Conclusion

By using the infinite transformations generated by D4 and Dy we have been able to
take off-mass-shell massless particles onto the mass-shell, and have been able to
describe the particles by using the transformed operators.

One point which has so far failed to emerge from this work, or our previous one on
massive particles (Almond 1973a, § I1l), is the connection between the space—time
position operator R* and the localised off-mass-shell states given by (Almond 1973a,
equation (II1.65))

1
@m)’

I, 537,0) == [ d*p 66766 €, 53 p, 7) (5.1)
{(for d = 4), and also valid for m = 0. The elucidation of this problem is an important
goal for future work.

Appendix 1. The group of inhomogeneous Galilei transformations and the
dilatation (¢, x') = (A1, Ax) in A space dimensions

Thisisa[3(A+1)(A+2)+ 1]-parameter group consisting of space rotations, pure Galilei
transformations, displacements in space and time, and the non-relativistic dilatations
acting on a A-dimensional Euclidean space plus time:

¥ =ARx +A%vr +a, =A%+, (A1.1)

where R is a rotation matrix, v is a boost velocity, a is a displacement in space, b is a
displacement in time, and A is a dilatation. It has been studied in detail for A=3
(Almond 1973a, §II, 1974, Bez 1976), and it has been shown (Almond 1973a,
appendix A) that, because in quantum mechanics we are looking for unitary ray
representationst of the group, i.e. unitary operators U(G) satisfying

UGHYU(G)=e““"PU(G'G), (A1.2)

t The classic paper on the subject is that of Bargmann (1954). There are several reviews available
(Hamermesh 1962, ch 12, Lévy-Leblond 1971, § III.A, Almond 1973b).
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with G', G two group elements and £(G’, G) a real phase factor, the structure we are
studying in Hilbert space is not the Lie algebra of the group, but a certain central
extension of it. The same central extension occurs for general A, and it is given by

7, T = —ig*s" — is™ + g™ — yiks™, U K*]=i(K's™ ~K's™),

7% P*1=i(P's’ — P's™), [K',H]=-iP', [K', P']= -iM8",

7, Hl=[K' K']1=[P', P']=[P, H]=0, (AL.3)
(D, J"]=0, [D,K'1=iK, [D, P']=-iP,,

(D, H]= -2iH, ' M]=[K',M]=[P',M]=[H, M]=[D, M]=0,

where J7, K', P', H and D are the Hermitian Hilbert space generators of rotations,
boosts, space displacements, time displacements and dilatations, respectively, and M is

the Hermitian Hilbert space generator of the central extension.
Let us now define the spin, time and position operators by

§¥=~J"+(K'P - K'P)/M, (Al.4a)
1t (X, P').

T—4[U’D]+ e, (A1.4b)
,_TP'-K'_ 1 [P X', PP)._K'

R=— _4M[U’D]+ MU M (Aldo)

respectively, where we have written U = (H — P*/2M)) for the internal energy opera-
tor. These operators have the following commutation relations with the generators,

[Jii’ Skl] = _i(sikail _Silajk +si18ik _Sikail)’
(XK', s¥1=[P', $¥1=[H, s*]1=[D, §*1=[M, s*'1=0,

7 Ti=0, [K', T]=0, [P, T1=0,
(A1.5)
(H, T]=i, [D, T]=2iT, M, T]=0,
[J7, R*]=i(R's™ — R's™), [K',R']=-i8"T,
[Pi,Ri]-._iaiis [D’Ri]‘:iRi’ [MRi]=0v
and with each other,
[Sii Skl] = i(slkajl _Sl'laik +Sllslk _Sjkail)
(Al1.6)

[$", T)=[s", R|=[T, R"]=[R', R'] =0,

all as we should expect.

Equations (A1.5) and (A1.6) describe a virtual (off-energy-shell) non-relativistic
particle, and the invariant operators of the algebra are M giving the mass, 1§”S” which
for A =<3 gives the spin of the particle (for A>3, there are other spin-type invariants,
e.g. for A=4, }¢"™'§"S* is also invariant), and sign (U). Since the internal energy U is
arbitrary for a non-relativistic particle (Lévy-Leblond 1963, Almond 1973a, §1I), a
virtual non-relativistic particle is described group-theoretically by the direct sum of
irreducible representations with the same mass and spin but with sign (UU)=<1, as
shown by Bez (1976).
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Appendix 2. Poisson brackets and Dirac brackets

The Poisson brackets of R“, P* and W*” are obtained from the commutators,
equations (2.7), by the replacement [A, B]/i»{A, B}. We wish to construct Dirac
brackets (Dirac 1958, 1964, Hanson et al 1976) compatible with the second-class
constraints

@1=P*=0, (A2.1a)

¢:=R"—p=0. (A2.1b)
We can construct from any dynamical variable A, a new variable A":

A>A'=A~{A, ¢.}Cop0s, (A22)
where

+f 01
Caﬁ={¢aa‘PB}=2P <_ )’

10
1 1 (0 —1)
Cas=3p7\1 o)

This procedure is quite general, and normally we find that A’ is weakly equal to A,

A'=A, (A2.4)

(A2.3)

and, taking the Poisson bracket of equation (A2.2) with a second-class constraint ¢,,
{A', ¢,}=0. (A2.5)

In other words, A’ is a quantity which is compatible with the constraints. However, in
this particular case, this is not so, since {4, R —g8}is ~1/ P*for A=R*"or W*. In
fact

R*>B, R »R +W */2P"-P (R -B)/P",

Ri_)Ri . W+i/2P+__Pi(R+_B)/P+’

P> P, P P -P?/2P", P'> P, (A2.6)

wWrs3iw* WisW ' +(P W"'+P'W /2P,

Wi Wi— (WP - w*p')/2P", Wra3w
We therefore see that the quantities R*, R — W */P", R'+w*/p*, P*, P, P
~Wi— (WP — W P"/P" and —(P*)'*W*!/P" are weakly unchanged under equa-
tion (A2.2), and are therefore the relevant dynamical variables to study. But they are
the same quantities which were found in § 3.1.1 and whose Poisson brackets with each

other are given by equations (3.6) with [A, B]/i>{A, B}. Their Dirac brackets are
given by the formula

{A, BY*={A, B}~ {A, ¢.}C2s{¢s, B}, (A2.7)
and we find that the Dirac brackets are equal to the Poisson brackets except for
{ W+i }* Pi

Ri+—, P =5

e
S (R, P =0, {R"-—“—/T,P‘} P a2

P P*
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Appendix 3. An operator identity

Consider three operators A, B, C satisfying the commutation relations

[A, B]=iC, [C A]=1A, [C, B]=~iB, (A3.1)

i.e. the Lie algebra of SO(2,1). (We are thinking in terms of A=M"', B =M
C =M®“"", but our treatment is quite general.) Let us look for an expression for
exp(i@(A — B)) of the form

i0A-B th(81A _if(6)C _ig(8)B \
e1 § )=el (81 e!f( elg( } . (A32)

On differentiating with respect to 8, we find

eio(A—B)i(A _B) =eih(9)Aih’(&)A eif(B)Ceig(H\B
+eih(9)Aeif(9)Cif;(0)c eig(9)3+eih{8\A eif(mCeig(B)B Ig’(G)B kA33)
We must now commute the operators A and C in the first two terms past the

exponentials to the right of them by expanding the exponentials as power series and
using the identity (valid for any two operators P and Q)

n—1 X
[P,Q"]= Y Q'[P,QlQ"'". (A3.4)
j=0
We eventually find
eie(A~B)i(A -B) =ih(6)4 eif(@)Ceig(O)Bi(hl(e) A —g(@)C—%gZ(G)B)
+f(8)C+f(0)g(6)B +g'(8)B).

(A3.5)

On equating the coefficients of A, B and C on the two sides of this equation, we find
h(g)y=e"?, f'(6)=g(8), 2¢'(6)=—(g°(6)+2), (A3.6)

which must be solved with the boundary conditions /£ (0) = f(0) = g(0) = 0. This gives us

g(6)=—V2tan(6/V2+nm), £(6)=1n cos*(8/~2 +nm),

h(8) =2 tan(6/V2 + nr) (n = integer), (A3.7)
and, on choosing the branch n = 0, we obtain our final result:

elfA—B) ei\/Ztan(G/x/z)A euncoszw/\/z)ce-i¢2tan(9/¢2)3. (A3.8)
Similarly, we find

eI0ATE) ei\/Z tanh(6/vV2)A eilncosh2(9/\/2)cei‘/ztanh(g/\/z)B. (A3.9)

The corresponding formulae with the positions of A and B interchanged can be found
by the substitution A » B, B> A, C » —C in equations (A3.8) and (A3.9):

i6(A—B) _ e —iv2tan(8/v2)B e ~ilncos2(6/v2)C ewz tan(6/v2)A
- s

(A3.10)

el{iG(A-&-B) - ei\/2tanh(9/\/‘2)B e~ilncosh2(9/\/2)Cei~/2tanh(6/v"2)A
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Appendix 4. A note on the finite-dimensional irreducible representations of
SOd-1,1)

Firstly, we note that the finite-dimensional (and therefore non-unitary) irreducible
representations of the Lie algebra of SO(d—1,1) are given by the irreducible
representations of SO(d) which are generated by the operators M7, M‘“™" iM% and
iM®“4™Y SO(d) has rank K +1, where K is the rank of SO(d —2). The irreducible
representations are labelled by the invariants g, (/=1... K +1), and states within an
irreducible representation are labelled by the eigenvalue m of iM 0@=D ‘the eigenvalues
me (k=1...K) of K mutually commuting M", and the eigenvalues b, (j=
1...33d(d-1)-3(K +1)]) of the extra labelling operators. We can write the Lie
algebra in ‘Weyl form’ with the Hermitian operators

iMO4D M2 AP MS L (A4.1)
The operators
M7 '+iM?2 M3 +iM M7 xiM~8, .. (A4.2)

. . . -1 . I
are raising operators for iM®“™" and lowering/raising operators for M'%, M**,

M, . ... The operators

M+liiM+2, M+3iiM+4 M+5:tiM+6 (A4 3)
are lowermg operators for iM*?™" and lowering/raising operators for M'?, M>*,
M>® . For d odd, the last operators in (A4.2) and (A4, 3) are M~ and M+ 2)
respectlvely, which have no effect on M'3, M, M*°, ... There are also the
lowering/raising operators for M 12,

M>2xiM*, M xiMY, L (Ad.4)

and also for M“, M56, e

A state with the greatest eigenvalue ., of iM 0wd=1)

satisfies

(M7 M )VE L mey =0, (M7 £iM Y s =0, etc,  (A4.5)
and, by the theory of finite-dimensional representations of Lie algebras, will also satisfy
M7 M =0, (MU -MTHTTE =0, ete,  (A4.6)

withp, g, . . . integersand (M +iM 2P ®(2) ., #0, etc. From equations (A4.6) we
can derive

(n iM+i)(p+q+..4)+1‘pgt’1")max,m’b) - 0 (A4.7)

(with n' an arbitrary transverse unit vector) by expressing n’M*" as a linear combination
of M*'£iM™*?, etc, expanding in a binomial series, and using equations (A4.6). (The
proof is straightforward for (d —2) = 2, and can be proved for higher d by induction.)
The equation

(M, (n'M™H] = (' MTH* (h + 1AMV —1h) (h =integer) (A4.8)

follows from equations (2.17) and (A3.4), and, on putting h = (p +q + .) and using
equatlons (A4.5) and (A4.7), we see that the eigenvalue iy, of iM™ - is equal to
Wp+q+...).

Let us now return to equation (3.25). Instead of the state |o, s, t; («, 0, k)u, o} we
consider the states |o, s, t; (, 0, k), u, a}fﬁ‘n)m“,_a,b) which transform as the (#max, —0, b)
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component of the (a) irreducible representation of SO(d — 1, 1). Since, on each of these
states, the second exponential becomes ( p0 cos’(3a)/ k)™~ and the first exponential
terminates at the (p'M *'/p*)*™ term by equation (A4.7), giving a factor tan>"=(la),
we see that equation (3.25) is, in fact, non-singular as @ - 7.
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